Patents by Inventor Ichirota Nagahama

Ichirota Nagahama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9368314
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical systems; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: June 14, 2016
    Assignee: EBARA CORPORATION
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Publication number: 20140319346
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical systems; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 30, 2014
    Applicant: EBARA CORPORATION
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Patent number: 8803103
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: August 12, 2014
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Patent number: 8611638
    Abstract: According to an embodiment, a pattern inspection apparatus includes an imaging unit, a defect detection unit, and an inspection control unit. The imaging unit is configured to image a pattern on a substrate to acquire a pattern image. The defect detection unit is configured to detect a defect of the pattern by a first outer shape comparison in associate with the pattern image and design information for the pattern or by a comparison in pixel values between images of patterns designed to be formed into the same shape in the substrate. The inspection control unit is configured to select an inspection based on the amount of the defect detected by the first outer shape comparison or based on a value of a gradient of an edge profile of the pattern image and to control the imaging unit and the defect detection unit in accordance with the selected inspection.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ichirota Nagahama
  • Patent number: 8368031
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: February 5, 2013
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Patent number: 8124933
    Abstract: An apparatus capable of detecting defects of a pattern on a sample with high accuracy and reliability and at a high throughput, and a semiconductor manufacturing method using the same are provided. The electron beam apparatus is a mapping-projection-type electron beam apparatus for observing or evaluating a surface of the sample by irradiating the sample with a primary electron beam and forming on a detector an image of reflected electrons emitted from the sample. An electron impact-type detector such as an electron impact-type CCD or an electron impact-type TDI is used as the detector for detecting the reflected electrons. The reflected electrons are selectively detected from an energy difference between the reflected electrons and secondary electrons emitted from the sample.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 28, 2012
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Kenji Watanabe, Takeshi Murakami, Masahiro Hatakeyama, Yoshinao Hirabayashi, Tohru Satake, Nobuhara Noji, Yuichiro Yamazaki, Ichirota Nagahama
  • Publication number: 20120032079
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Application
    Filed: September 23, 2011
    Publication date: February 9, 2012
    Applicants: KABUSHIKI KAISHA TOSHIBA, EBARA CORPORATION
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Publication number: 20120026316
    Abstract: According to an embodiment, a pattern inspection apparatus includes an imaging unit, a defect detection unit, and an inspection control unit. The imaging unit is configured to image a pattern on a substrate to acquire a pattern image. The defect detection unit is configured to detect a defect of the pattern by a first outer shape comparison in associate with the pattern image and design information for the pattern or by a comparison in pixel values between images of patterns designed to be formed into the same shape in the substrate. The inspection control unit is configured to select an inspection based on the amount of the defect detected by the first outer shape comparison or based on a value of a gradient of an edge profile of the pattern image and to control the imaging unit and the defect detection unit in accordance with the selected inspection.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 2, 2012
    Inventor: Ichirota NAGAHAMA
  • Patent number: 8067732
    Abstract: An electron beam emitted from an electron gun (G) forms a reduced image on a sample (S) through a non-dispersion Wien-filter (5-1), an electromagnetic deflector (11-1), a beam separator (12-1), and a tablet lens (17-1) as an objective lens. The beam separator (12-1) is configured such that a distance by which a secondary electron beam passes through the beam separator is approximately three times longer than a distance by which a primary electron beam passes through the beam separator. Therefore, even if a magnetic field in the beam separator is set to deflect the primary electron beam by a small angle equal to or less than approximately 10 degrees, the secondary electron beam can be deflected by approximately 30 degrees, so that the primary and secondary electron beams are sufficiently separated. Also, since the primary electron beam is deflected by a small angle, less aberration occurs in the primary electron beam.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: November 29, 2011
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Mamoru Nakasuji, Takeshi Murakami, Tohru Satake, Tsutomi Karimata, Toshifumi Kimba, Matsutaro Miyamoto, Hiroshi Sobukawa, Satoshi Mori, Yuichiro Yamazaki, Ichirota Nagahama
  • Patent number: 8053726
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: November 8, 2011
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Patent number: 8035082
    Abstract: A sample is evaluated at a high throughput by reducing axial chromatic aberration and increasing the transmittance of secondary electrons. Electron beams emitted from an electron gun 1 are irradiated onto a sample 7 through a primary electro-optical system, and electrons consequently emitted from the sample are detected by a detector 12 through a secondary electro-optical system. A Wien filter 8 comprising a multi-pole lens for correcting axial chromatic aberration is disposed between a magnification lens 10 in the secondary electro-optical system and a beam separator 5 for separating a primary electron beam and a secondary electron beam, for correcting axial chromatic aberration caused by an objective lens 14 which comprises an electromagnetic lens having a magnetic gap defined on a sample side.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: October 11, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Yamazaki, Ichirota Nagahama
  • Patent number: 7863580
    Abstract: An electron beam apparatus for providing an evaluation of a sample, such as a semiconductor wafer, that includes a micro-pattern with a minimum line width not greater than 0.1 ?m with high throughput. A primary electron beam generated by an electron gun is irradiated onto a sample and secondary electrons emanating from the sample are formed into an image on a detector by an image projection optical system. An electron gun 61 has a cathode 1 and a drawing electrode 3, and an electron emission surface 1a of the cathode defines a concave surface. The drawing electrode 3 has a convex surface 3a composed of a partial outer surface of a second sphere facing the electron emission surface 1a of the cathode and an aperture 73 formed through the convex surface for passage of the electrons.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 4, 2011
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Masahiro Hatakeyama, Takeshi Murakami, Nobuharu Noji, Mamoru Nakasuji, Hirosi Sobukawa, Satoshi Mori, Tsutomu Karimata, Yuichiro Yamazaki, Ichirota Nagahama
  • Patent number: 7847250
    Abstract: A substrate inspection apparatus includes: an electron beam irradiation device which emits an electron beam and causes the electron beam to irradiate a substrate to be inspected as a primary beam; an electron beam detector which detects at least one of a secondary electron, a reflected electron and a backscattered electron that are generated from the substrate that has been irradiated by the electron beam, and which outputs a signal that forms a one-dimensional or two-dimensional image of a surface of the substrate; a mapping projection optical system which causes imaging of at least one of the secondary electron, the reflected electron and the backscattered electron on the electron beam detector as a secondary beam; and an electromagnetic wave irradiation device which generates an electromagnetic wave and causes the electromagnetic wave to irradiate a location on the surface of the substrate at which the secondary beam is generated.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichirota Nagahama, Yuichiro Yamazaki, Takamitsu Nagai, Motosuke Miyoshi
  • Patent number: 7838831
    Abstract: A substrate inspection method includes forming a conductive thin film on a surface of an inspection target substrate with a pattern formed thereon, generating an electron beam and irradiating the substrate having the thin film formed thereon with the electron beam, detecting at least any of secondary electrons, reflected electrons and backscattered electrons released from the surface of the substrate and outputting signals constituting an inspection image, and selecting at least any of a material, a film thickness and a configuration for the thin film, or at least any of a material, a film thickness and a configuration for the thin film and an irradiation condition with the electron beam according to an arbitrary inspection image characteristic so that an inspection image according to an inspection purpose can be obtained.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: November 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ichirota Nagahama
  • Publication number: 20100096550
    Abstract: A sample is evaluated at a high throughput by reducing axial chromatic aberration and increasing the transmittance of secondary electrons. Electron beams emitted from an electron gun 1 are irradiated onto a sample 7 through a primary electro-optical system, and electrons consequently emitted from the sample are detected by a detector 12 through a secondary electro-optical system. A Wien filter 8 comprising a multi-pole lens for correcting axial chromatic aberration is disposed between a magnification lens 10 in the secondary electro-optical system and a beam separator 5 for separating a primary electron beam and a secondary electron beam, for correcting axial chromatic aberration caused by an objective lens 14 which comprises an electromagnetic lens having a magnetic gap defined on a sample side.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 22, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuichiro YAMAZAKI, Ichirota NAGAHAMA
  • Patent number: 7674570
    Abstract: A mask pattern inspection method includes: transferring a mask pattern onto a conductor substrate or a semiconductor substrate; preparing a sample including a substrate surface pattern in an electrically conductive state to the substrate, the substrate surface pattern being constituted of a convex pattern or a concave pattern each having a shape in accordance with the transferred mask pattern, or a surface layer obtained by filling the concave pattern with a material; irradiating the sample with an electron beam to detect at least one of a secondary electron, a reflected electron and a backscattered electron generated from the surface of the sample, thereby acquiring an image of the sample surface; and inspecting the mask pattern on the basis of the image.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: March 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichirota Nagahama, Yuichiro Yamazaki, Atsushi Onishi
  • Publication number: 20100021046
    Abstract: A pattern inspection apparatus includes: an inspection threshold setting unit to set a defect detection threshold to be used in inspection of an inspection pattern by referring to design information of an inspection layer which is included in a plurality of layers on a substrate and which has the inspection pattern formed thereon, and design information of an adjacent layer which is one of two layers adjacent to the inspection layer in a normal line direction of the substrate; a deviation amount calculation unit to receive an image containing the inspection layer and the adjacent layer, detect edges of the image, and calculate a deviation amount between an edge of the inspection pattern and an edge of a pattern of the adjacent layer; and a defect determination unit to determine whether there is a defect in the inspection pattern by comparing the calculated deviation amount with the defect detection threshold.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 28, 2010
    Inventor: Ichirota Nagahama
  • Publication number: 20100019149
    Abstract: An apparatus capable of detecting defects of a pattern on a sample with high accuracy and reliability and at a high throughput, and a semiconductor manufacturing method using the same are provided. The electron beam apparatus is a mapping-projection-type electron beam apparatus for observing or evaluating a surface of the sample by irradiating the sample with a primary electron beam and forming on a detector an image of reflected electrons emitted from the sample. An electron impact-type detector such as an electron impact-type CCD or an electron impact-type TDI is used as the detector for detecting the reflected electrons. The reflected electrons are selectively detected from an energy difference between the reflected electrons and secondary electrons emitted from the sample.
    Type: Application
    Filed: August 10, 2009
    Publication date: January 28, 2010
    Applicants: EBARA CORPORATION, KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenji WATANABE, Takeshi MURAKAMI, Masahiro HATAKEYAMA, Yoshinao HIRABAYASHI, Tohru SATAKE, Nobuharu NOJI, Yuichiro YAMAZAKI, Ichirota NAGAHAMA
  • Patent number: 7645988
    Abstract: A substrate inspection method includes: generating an electron beam and irradiating the electron beam as a primary electron beam to a substrate as a specimen; inducing at least any of a secondary electron, a reflected electron and a backscattering electron which are emitted from the substrate receiving the primary electron beam, and magnifying and projecting the induced electron as a secondary electron beam so as to form an image of the secondary electron beam; a trajectory of the primary electron beam and a trajectory of the secondary electron beam having an overlapping space and space charge effect of the secondary electron beam occurring in the overlapping space, detecting the image of the secondary electron beam to output a signal representing a state of the substrate; and suppressing aberration caused by the space charge effect in the overlapping space.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: January 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichirota Nagahama, Yuichiro Yamazaki, Atsushi Onishi
  • Patent number: 7608821
    Abstract: A substrate inspection apparatus includes: an electron gun which generates an electron beam to irradiate the electron beam to a substrate; an electron detection unit which detects at least one of a secondary electron, a reflection electron and a back scattering electron generated from a surface of the substrate by the irradiation of the electron beam to output signals constituting an image showing a state of the substrate surface; and a surface potential uniformizing unit which generates ions, and irradiates the ions to the substrate before the irradiation of the electron beam to uniformize a surface potential of the substrate.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: October 27, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichirota Nagahama, Yuichiro Yamazaki, Atsushi Onishi