Patents by Inventor Ick-Chan Kwon

Ick-Chan Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190076543
    Abstract: The present invention is related to a method for treating cancer by using siRNA nanocomplexes. The present nanocomplex consists of a nucleic acid molecule, a monocationic drug and a biocompatible polymer surfactant, and not only has a hydrodynamic size of 10 nm or less, but uniformly distributes as a colloidal form in an aqueous environment. In addition, the nanoscale colloidal formulation of the present invention could protect the nucleic acid molecule from a nuclease (for example, serum nucleases) rich in a physiological environment through the formulation of a stable monocomplex, and provide improvement of cell penetration and in vivo delivery via a micellar structure as well as further protection of the nucleic acid molecule by a micellar passivation.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 14, 2019
    Inventors: Sehoon KIM, Ick Chan KWON, Eunjung LEE
  • Patent number: 10213515
    Abstract: The present disclosure relates to a glycopeptide targeting cancer cells and a contrast agent kit containing the same. The glycopeptide is one wherein an azide reporting monosaccharide is bound to a substrate peptide. As the substrate peptide is specifically cleaved by cathepsin B in cancer cells, an azide reporting monosaccharide is expressed onto the cell surface via metabolic glycoengineering, thereby providing a target for action as a contrast agent. Accordingly, because the azide is exposed to the cell surface only by cathepsin B, as it is specifically expressed in cancer cells, in particular in metastatic cancer cells, while it is limitedly expressed in normal cells and is hardly excreted out the cells, the cancer cells can be selectively imaged by an azide-specific contrast agent.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: February 26, 2019
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kwangmeyung Kim, Ju Hee Ryu, Ick Chan Kwon, Man Kyu Shim, Hong Yeol Yoon
  • Publication number: 20190010528
    Abstract: A bacterium that constitutively produces monophosphoryl lipid A (MLA) and a method of producing MLA by using the bacterium may simply produce MLA and a derivative thereof without acid hydrolysis, reduce a probability of natural mutation, and increase yields of MLA and a derivative thereof by constitutive expression of the MLA and derivative thereof.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hak Suk Chung, Yu Hyun Ji, Jin Su An, Ick Chan Kwon, Eun Gyeong Yang
  • Patent number: 10172879
    Abstract: The present invention relates to a nanocomplex, and a pharmaceutical composition, a drug delivery system and a drug delivery method using the same. The present nanocomplex consists of a nucleic acid molecule, a monocationic drug and a biocompatible polymer surfactant, and not only has a hydrodynamic size of 10 nm or less, but uniformly distributes as a colloidal form in an aqueous environment. In addition, the nanoscale colloidal formulation of the present invention could protect the nucleic acid molecule from a nuclease (for example, serum nucleases) rich in a physiological environment through the formulation of a stable monocomplex, and provide improvement of cell penetration and in vivo delivery via a micellar structure as well as further protection of the nucleic acid molecule by a micellar passivation.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: January 8, 2019
    Assignee: D.R.NANO CO., LTD
    Inventors: Sehoon Kim, Ick Chan Kwon, Eunjung Lee
  • Publication number: 20190000974
    Abstract: The present invention discloses a method for treating cancer disease by photodynamic therapy. The photodynamic therapy in the present invention uses a methylene blue nanoparticle as a therapeutic agent. The methylene blue nanoparticle of the present invention for use as a topical cancer targeting phototherapeutic agent is composed of only a material of which the composition is clinically used or derived from human bodies, and thus a nanopreparation in which a barrier to clinical entry is low and the possibility of commercialization is very high, exhibits near-infrared fluorescence along with cancer targeting property, capacity of generating a singlet oxygen and the like. Therefore, the methylene blue nanoparticle in the present invention is able to cure cancer cells by cell apoptosis in irradiation conditions.
    Type: Application
    Filed: August 22, 2018
    Publication date: January 3, 2019
    Inventors: Sehoon KIM, Ick Chan KWON, Sangyoup LEE
  • Publication number: 20180360997
    Abstract: The present invention discloses a method for diagnosing and detecting cancer by bioimaging using methylene blue nanoparticle as a contrasting agent. The methylene blue nanoparticle of the present invention for use as a topical cancer targeting phototherapeutic agent is composed of only a material of which the composition is clinically used or derived from human bodies, and thus a nanopreparation in which a barrier to clinical entry is low and the possibility of commercialization is very high, exhibits near-infrared fluorescence along with cancer targeting property, a capacity of generating a singlet oxygen and the like. Therefore, the methylene blue nanoparticle in the present invention is able to detect cancerous cells by emitting visible light in irradiation conditions.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 20, 2018
    Inventors: Sehoon KIM, Ick Chan KWON, Sangyoup LEE
  • Patent number: 10086075
    Abstract: The present invention relates to a methylene blue nanoparticle for bioimaging and photodynamic therapy, and a use thereof as a cancer therapeutic agent and a contrast agent. The methylene blue nanoparticle of the present invention for use as a topical cancer targeting photo therapeutic agent is composed of only a material of which the composition is clinically used or derived from human bodies, and thus a nanopreparation in which a barrier to clinical entry is low and the possibility of commercialization is very high, exhibits near-infrared fluorescence along with cancer targeting property, capacity of generating singlet oxygen and the like, and thus may be used for both bioimaging diagnosis such as optical imaging, and cancer targeting photodynamic therapy.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 2, 2018
    Assignee: D.R.NANO CO., LTD.
    Inventors: Sehoon Kim, Ick Chan Kwon, Sangyoup Lee
  • Patent number: 9801943
    Abstract: The present disclosure relates to a method for in vivo targeting of a nanoparticle via bioorthogonal copper-free click chemistry, more particularly to a method for in vivo targeting of a nanoparticle, including: injecting a precursor capable of being metabolically engineered in vivo when injected into a living system and having a first bioorthogonal functional group into the living system; and injecting a nanoparticle having a second bioorthogonal functional group which can perform a bioorthogonal copper-free click reaction with the first bioorthogonal functional group attached thereto into the living system. In accordance with the present disclosure, accumulation of nanoparticles at a target site in a living system can be increased remarkably and the biodistribution of the nanoparticles can be controlled since the nanoparticles bound to a cell surface are taken up into the cell with time.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 31, 2017
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kwang Meyung Kim, Ick Chan Kwon, Kuiwon Choi, Heebeom Koo, Sang-min Lee, Inchan Youn
  • Publication number: 20170216460
    Abstract: The present disclosure relates to a glycopeptide targeting cancer cells and a contrast agent kit containing the same. The glycopeptide is one wherein an azide reporting monosaccharide is bound to a substrate peptide. As the substrate peptide is specifically cleaved by cathepsin B in cancer cells, an azide reporting monosaccharide is expressed onto the cell surface via metabolic glycoengineering, thereby providing a target for action as a contrast agent. Accordingly, because the azide is exposed to the cell surface only by cathepsin B, as it is specifically expressed in cancer cells, in particular in metastatic cancer cells, while it is limitedly expressed in normal cells and is hardly excreted out the cells, the cancer cells can be selectively imaged by an azide-specific contrast agent.
    Type: Application
    Filed: May 31, 2016
    Publication date: August 3, 2017
    Inventors: Kwangmeyung KIM, Ju Hee RYU, Ick Chan KWON, Man Kyu SHIM, Hong Yeol YOON
  • Patent number: 9415060
    Abstract: Disclosed is a gelatin-based nanoparticle complex for tumor-targeted delivery of siRNA for specific gene silencing in tumor cells. The gelatin-based nanoparticle complex includes: poly-siRNA chains whose ends are modified with thiol groups; and thiolated gelatin bound to the poly-siRNA chains through disulfide crosslinking and charge interactions. The gelatin-based nanoparticle complex is not degraded in the bloodstream and can be efficiently absorbed into tumor cells without cytotoxicity. The delivered siRNA can effectively silence target gene expression. Also disclosed is a method for preparing the gelatin-based nanoparticle complex.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 16, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kwang Meyung Kim, Sun Hwa Kim, Ick Chan Kwon, Ji Young Yhee, Sojin Lee
  • Patent number: 9408910
    Abstract: The present invention relates to an anticancer prodrug consisting of peptide of acetyl-SEQ ID NO: 1-linker-anticancer drug. The anticancer prodrug effectively provides an anticancer drug unstable in acid or base, such as doxorubicin, in a form of prodrug. Thus, the anticancer prodrug exists as a non-toxic inactive form when administered into the body, but effectively releases the anticancer drug as an active ingredient in the target area in the presence of caspase activated by radiation or UV treatment after administered into the body. Accordingly, the anticancer drug exhibits selective anticancer effects on cancer cells, thereby maximizing the therapeutic effect and minimizing the side-effects of chemotherapy.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: August 9, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ju-Hee Ryu, Kwang-Meyung Kim, Ick-Chan Kwon, Kui-Won Choi, Sang-Yoon Kim, Beom-Suk Lee, Dae-Yoon Chi, Hee-Seup Kil, Hyun-Ju Sung
  • Patent number: 9408911
    Abstract: The present invention relates to an anticancer prodrug consisting of peptide of acetyl-SEQ ID NO: 1-linker-anticancer drug. The anticancer prodrug effectively provides an anticancer drug unstable in acid and base, such as doxorubicin, in a form of prodrug. Thus, the anticancer prodrug exists as a non-toxic inactive form when administered into the body, but effectively releases the anticancer drug as an active ingredient in the target area in the presence of caspase activated by radiation or UV treatment after administered into the body. Accordingly, the anticancer drug exhibits selective anticancer effects on cancer cells, thereby maximizing the therapeutic effect and minimizing the side-effects of chemotherapy.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 9, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ju-Hee Ryu, Kwang-Meyung Kim, Ick-Chan Kwon, Kui-Won Choi, Sang-Yoon Kim, Beom-Suk Lee, Dae-Yoon Chi, Hee-Seup Kil, Hyun-Ju Sung
  • Patent number: 9409923
    Abstract: Disclosed is a drug-fluorophore complex for specific detection of tumor cells. Specifically, the drug-fluorophore complex includes a tumor cell-targeting drug penetrating tumor cells and non-tumor cells at different rates or levels, and a fluorescent substance chemically bonded to the tumor cell-targeting drug. The drug-fluorophore complex enables specific imaging of tumor cells only with high accuracy in a very simple manner without causing cytotoxicity.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: August 9, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kwang Meyung Kim, Ick Chan Kwon, Sang Yoon Kim, Ju Hee Ryu, Eun Sung Jun, In San Kim
  • Publication number: 20160206647
    Abstract: The present invention relates to a nanocomplex, and a pharmaceutical composition, a drug delivery system and a drug delivery method using the same. The present nanocomplex consists of a nucleic acid molecule, a monocationic drug and a biocompatible polymer surfactant, and not only has a hydrodynamic size of 10 nm or less, but uniformly distributes as a colloidal form in an aqueous environment. In addition, the nanoscale colloidal formulation of the present invention could protect the nucleic acid molecule from a nuclease (for example, serum nucleases) rich in a physiological environment through the formulation of a stable monocomplex, and provide improvement of cell penetration and in vivo delivery via a micellar structure as well as further protection of the nucleic acid molecule by a micellar passivation.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 21, 2016
    Inventors: Sehoon Kim, Ick Chan Kwon, Eunjung Lee
  • Publication number: 20160208245
    Abstract: A RNA/DNA nanoparticle for delivering siRNA where a RNA transcript including at least one hairpin structure hybridizes DNA-cholesterol conjugate and folate-DNA conjugate including a complementary sequence to the RNA transcript, and a composition including the RNA/DNA nanoparticle is provided. More specifically, because various siRNA used for different applications can be contained in the RNA/DNA nanoparticle for delivering siRNA at a high loading efficiency, and has stability to the outer attacks such as nuclease degradation. The RNA/DNA nanoparticle siRNA can be prepared by self-assembly without using polycationic agent which is harmful agent for body. The folate targeting to various cancer cells can accumulate the nanoparticle selectively on target cancer cell after intravenous injection, and make excellent gene-silencing effect inside the cancer tissue, thereby being used as a good agent for treating cancers.
    Type: Application
    Filed: June 29, 2015
    Publication date: July 21, 2016
    Inventors: Hyung Jun AHN, Ick Chan KWON, Mihue JANG, Jong Hwan KIM
  • Publication number: 20160184430
    Abstract: The present invention relates to an anticancer prodrug consisting of peptide of acetyl-SEQ ID NO: 1-linker-anticancer drug. The anticancer prodrug effectively provides an anticancer drug unstable in acid and base, such as doxorubicin, in a form of prodrug. Thus, the anticancer prodrug exists as a non-toxic inactive form when administered into the body, but effectively releases the anticancer drug as an active ingredient in the target area in the presence of caspase activated by radiation or UV treatment after administered into the body. Accordingly, the anticancer drug exhibits selective anticancer effects on cancer cells, thereby maximizing the therapeutic effect and minimizing the side-effects of chemotherapy.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 30, 2016
    Applicant: Korea Institute of Science and Technology
    Inventors: Ju-Hee Ryu, Kwang-Meyung Kim, Ick-Chan Kwon, Kui-Won Choi, Sang-Yoon Kim, Beom-Suk Lee, Dae-Yoon Chi, Hee-Seup Kil, Hyun-Ju Sung
  • Patent number: 9259493
    Abstract: Disclosed is a liver tumor-targeting ultrasound contrast agent. The ultrasound contrast agent includes a gas-generating core and a hyaluronic acid shell. The ultrasound contrast agent can be specifically delivered to liver cells. This specific delivery enables easy differentiation between normal liver cells and liver tumor cells by ultrasound imaging. In addition, the ultrasound contrast agent is highly stable in aqueous condition and causes no cytotoxicity. Also disclosed is a method for preparing the ultrasound contrast agent.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: February 16, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kwang Meyung Kim, Ick Chan Kwon, Inchan Youn, Hyun Su Min, Hong Yeol Yoon, Jae Hyung Park
  • Patent number: 9259395
    Abstract: A tumor-targeting gas-generating nanoparticle, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same relate to a tumor-targeting gas-generating nanoparticle including a polycarbonate core and a amphiphilic coat, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same. Since a tumor-targeting gas-generating nanoparticle according to the present disclosure is accumulated in the tumor tissue in large quantity and generates strong ultrasound wave signals, it can be usefully used as a contrast agent for ultrasonic imaging.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 16, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ick Chan Kwon, Kwang Meyung Kim, Kuiwon Choi, Heebeom Koo, Hyun Su Min, Inchan Youn
  • Publication number: 20150273084
    Abstract: The present invention relates to a methylene blue nanoparticle for bioimaging and photodynamic therapy, and a use thereof as a cancer therapeutic agent and a contrast agent. The methylene blue nanoparticle of the present invention for use as a topical cancer targeting photo therapeutic agent is composed of only a material of which the composition is clinically used or derived from human bodies, and thus a nanopreparation in which a barrier to clinical entry is low and the possibility of commercialization is very high, exhibits near-infrared fluorescence along with cancer targeting property, capacity of generating singlet oxygen and the like, and thus may be used for both bioimaging diagnosis such as optical imaging, and cancer targeting photodynamic therapy.
    Type: Application
    Filed: March 25, 2015
    Publication date: October 1, 2015
    Inventors: Sehoon KIM, Ick Chan KWON, Sangyoup LEE
  • Patent number: 9061068
    Abstract: Disclosed is a polymer-siRNA delivery carrier in which a siRNA is combined with a polymer and the use thereof. More specifically, there is disclosed a stable in vivo polymer-siRNA delivery carrier in which a polymer and a siRNA are combined by using charge interaction and biodegradable covalent bonding at the same time and the use thereof. The polymer-siRNA delivery carrier in which a polymer and a siRNA are combined by using charge interaction and biodegradable covalent bonding at the same time has a high siRNA deliver efficiency to a target portion in vivo. Hence, according to the polymer-siRNA binder, the siRNA for treatment can be effectively delivered to a target portion such as in vivo cancer tissue, and the like even with administration of a relatively low concentration, and thus widely used for the treatment of various kinds of diseases.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: June 23, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kwang Meyung Kim, Ick Chan Kwon, Kuiwon Choi, Myung Sook Huh, Seung Young Lee, So Jin Lee