Patents by Inventor Idan BAKISH

Idan BAKISH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977169
    Abstract: A LIDAR system has a laser emission unit configured to generate a plurality of laser beams. The LIDAR system also has an optical system configured to transmit the plurality of laser beams from the laser emission unit to a common scanning unit. The common scanning unit is configured to project the plurality of laser beams toward a field of view of the LIDAR system to simultaneously scan the field of view along a plurality of scan lines traversing the field of view.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: May 7, 2024
    Assignee: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Ronen Eshel, Omer Keilaf, David Elooz, Lior Atias, Harel Yosef Shfaram, Nir Goren, Idan Bakish, Yuval Yifat, Itay Tehori, Roi Mautner, Yair Alpern
  • Publication number: 20240045040
    Abstract: A LIDAR system for detecting an obstruction on a window that is associated with the LIDAR system, the LIDAR system includes at least one processor configured to detect, based on detection signals generated by an obstruction sensor of the LIDAR system, an obstruction that at least partially obstructs a passage of light through the window. The obstruction sensor differs from an object related sensor of the LIDAR system that is configured to detect of one or more objects within a field of view (FOV) of the LIDAR system.
    Type: Application
    Filed: August 2, 2023
    Publication date: February 8, 2024
    Applicant: Innoviz Technologies Ltd.
    Inventors: Omri Tennenhaus, Idan Bakish, Oren Navon, Ido Amrani, Ronen Eshel, Yuval Yifat, Natali Revivo
  • Publication number: 20230375673
    Abstract: A distance measurement (DM) optical sensor that includes (i) a 2D sensing array that includes sensing elements that include DM sensing elements and feedback sensing elements that are statically allocated to act as feedback sensing elements, (ii) output paths that include DM output paths and feedback output paths; and (iii) one or more processing circuits that are configured to: (a) trigger an outputting of DM output signals, trigger an outputting of feedback output signals, and (b) process the feedback output signals to determine a spatial relationship between an actual location of light sensed by at least some of the sensing elements and an expected location of the light.
    Type: Application
    Filed: May 11, 2023
    Publication date: November 23, 2023
    Applicant: Innoviz Technologies Ltd.
    Inventors: Idan Bakish, Shahar Levy, David Cohen
  • Publication number: 20230251383
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Application
    Filed: April 19, 2023
    Publication date: August 10, 2023
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu SHANI, David ELOOZ, Idan BAKISH, Michael GIRGEL, Moshe MEDINA, Sason SOURANI, Yair ALPERN, Smadar David RALY
  • Patent number: 11662467
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 30, 2023
    Assignee: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu Shani, David Elooz, Idan Bakish, Michael Girgel, Moshe Medina, Sason Sourani, Yair Alpern, Smadar David Raly
  • Patent number: 11609119
    Abstract: A handheld spectrometer can be configured with a visible aiming beam to allow the user to determine the measured region of the object. When the visible aiming beam comprises the spectrometer measurement beam, the spectrometer measurement beam comprises sufficient energy for the user to see the measurement beam illuminating the object. When the visible aiming beam comprises a separate beam, the visible aiming beam comprises sufficient energy for the user to see a portion of the aiming beam reflected from the object. The visible aiming beam and measurement beam can be arranged to at least partially overlap on the sample, such that the user has an indication of the area of the sample being measured.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 21, 2023
    Assignee: VERIFOOD, LTD.
    Inventors: Damian Goldring, Dror Sharon, Sagee Rosen, Ittai Nir, Uri Kinrot, Omer Keilaf, Guy Brodetzki, Amir Levy, Elad Heiman, Idan Bakish
  • Publication number: 20220276345
    Abstract: A LIDAR system has a laser emission unit configured to generate a plurality of laser beams. The LIDAR system also has an optical system configured to transmit the plurality of laser beams from the laser emission unit to a common scanning unit. The common scanning unit is configured to project the plurality of laser beams toward a field of view of the LIDAR system to simultaneously scan the field of view along a plurality of scan lines traversing the field of view.
    Type: Application
    Filed: February 9, 2022
    Publication date: September 1, 2022
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Ronen ESHEL, Omer KEILAF, David ELOOZ, Lior ATIAS, Harel Yosef SHFARAM, Nir GOREN, Idan BAKISH, Yuval YIFAT, Itay TEHORI, Roi MAUTNER, Yair ALPERN
  • Publication number: 20220171026
    Abstract: A replaceable antireflective sticker may include a substrate having a thickness less than 5 mm. The replaceable antireflective sticker may also include an antireflective coating on one side of the substrate. The antireflective sticker may further include a coupling surface for detachably coupling the antireflective sticker to a window of a LIDAR system.
    Type: Application
    Filed: July 17, 2020
    Publication date: June 2, 2022
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Idan BAKISH, David ELOOZ, Roi MAUTNER, Matityahu SHANI
  • Publication number: 20220011162
    Abstract: A handheld spectrometer can be configured with a visible aiming beam to allow the user to determine the measured region of the object. When the visible aiming beam comprises the spectrometer measurement beam, the spectrometer measurement beam comprises sufficient energy for the user to see the measurement beam illuminating the object. When the visible aiming beam comprises a separate beam, the visible aiming beam comprises sufficient energy for the user to see a portion of the aiming beam reflected from the object. The visible aiming beam and measurement beam can be arranged to at least partially overlap on the sample, such that the user has an indication of the area of the sample being measured.
    Type: Application
    Filed: June 18, 2021
    Publication date: January 13, 2022
    Inventors: Damian Goldring, Dror Sharon, Sagee Rosen, Ittai Nir, Uri Kinrot, Omer Keilaf, Guy Brodetzki, Amir Levy, Elad Heiman, Idan Bakish
  • Publication number: 20210389467
    Abstract: Systems and methods may detect an object within a minimum predetermined distance of a LIDAR system. The LIDAR system may comprise a processor configured to control a light source and a light deflector to illuminate objects located in a space illuminated by the light source; determine a distance to a first object based located within a field of view of a LIDAR sensor; receive, from a supplementary sensor, reflection signals indicative of light reflected from a second object outside the field of view; determine, based on the second reflection signals that the second object is located within a predetermined distance; and regulate, based on the determination, at least one of the light source and the light deflector to prevent an accumulated energy density of light emitted by the light source from exceeding a maximum permissible exposure level.
    Type: Application
    Filed: October 17, 2019
    Publication date: December 16, 2021
    Inventors: RONEN ESHEL, AMIT STEINBERG, IDAN BAKISH, SHAHAR LEVY, YUVAL YIFAT
  • Publication number: 20210293931
    Abstract: Systems and methods are disclosed for a LIDAR system with a mirror housing and a window. The LIDAR system may include a light deflector, a mirror housing encasing the light deflector comprising a window for transmitting light between the light deflector and an exterior of the mirror housing, and a sensor positioned outside the mirror housing for detecting light signals from an environment of the LIDAR system. The light signals may propagate from the environment through the window to the light deflector, and from the light deflector through the window to the sensor. The window may be configured such that light arriving from outside of a field of view of the LIDAR system is deflected by the window away from the sensor. The LIDAR system may also include a processor for processing the light signals detected by the sensor to determine a distance to an object in the environment of the LIDAR system.
    Type: Application
    Filed: July 26, 2019
    Publication date: September 23, 2021
    Inventors: Boaz Nemet, Idan Bakish, Shahar Levy, Harel Yosef Shfaram
  • Patent number: 11067443
    Abstract: A handheld spectrometer can be configured with a visible aiming beam to allow the user to determine the measured region of the object. When the visible aiming beam comprises the spectrometer measurement beam, the spectrometer measurement beam comprises sufficient energy for the user to see the measurement beam illuminating the object. When the visible aiming beam comprises a separate beam, the visible aiming beam comprises sufficient energy for the user to see a portion of the aiming beam reflected from the object. The visible aiming beam and measurement beam can be arranged to at least partially overlap on the sample, such that the user has an indication of the area of the sample being measured.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: July 20, 2021
    Assignee: VERIFOOD, LTD.
    Inventors: Damian Goldring, Dror Sharon, Sagee Rosen, Ittai Nir, Uri Kinrot, Omer Keilaf, Guy Brodetzki, Amir Levy, Elad Heiman, Idan Bakish
  • Publication number: 20200393545
    Abstract: A LIDAR system including a MEMS scanning device is disclosed. The LIDAR system includes a light source, a light deflector, a sensor, and a processor. The light deflector deflects light from the light source or light received from an environment outside a vehicle in which the LIDAR system is installed. The sensor detects the light received from the light source or the environment. The processor determines a distance of one or more objects in the environment from the vehicle based on the signals from the sensor. The light deflector includes one or more actuators, which include one or more actuating arms. Connectors connect the actuating arms to an MEMS mirror or other deflector. The actuating arms move when subjected to an electrical field in the form of a voltage or current. Movement of the actuating arms causes movement of the MEMS mirror or deflector causing it to deflect light.
    Type: Application
    Filed: November 28, 2018
    Publication date: December 17, 2020
    Applicant: INNOVIZ TECHNOLOGIES LTD.
    Inventors: Matityahu SHANI, David ELOOZ, Idan BAKISH, Michael GIRGEL, Moshe MEDINA, Sasan SOURANI, Yair ALPERN, Smadar David RALY
  • Publication number: 20200209060
    Abstract: A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 2, 2020
    Inventors: Sagee ROSEN, Idan BAKISH, Uri KINROT
  • Publication number: 20200049555
    Abstract: A handheld spectrometer can be configured with a visible aiming beam to allow the user to determine the measured region of the object. When the visible aiming beam comprises the spectrometer measurement beam, the spectrometer measurement beam comprises sufficient energy for the user to see the measurement beam illuminating the object. When the visible aiming beam comprises a separate beam, the visible aiming beam comprises sufficient energy for the user to see a portion of the aiming beam reflected from the object. The visible aiming beam and measurement beam can be arranged to at least partially overlap on the sample, such that the user has an indication of the area of the sample being measured.
    Type: Application
    Filed: June 24, 2019
    Publication date: February 13, 2020
    Inventors: Damian Goldring, Dror Sharon, Sagee Rosen, Ittai Nir, Uri Kinrot, Omer Keilaf, Guy Brodetzki, Amir Levy, Elad Heiman, Idan Bakish
  • Patent number: 10334390
    Abstract: Method and system for enhancing acoustic performances in an adverse acoustic environment, where the system comprises: an array of acoustic sensors having different directivities; and an analysis module being configured for optimizing signal enhancement of at least one source, by correlating the sensors according to respective position of the at least one source in respect to the directivity of the acoustic sensors, based on reflections from reverberating surfaces in the specific acoustic environment, wherein the optimization and sensors directivity allows maintaining the sensor array in compact dimensions without affecting signal enhancement and source separation.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: June 25, 2019
    Inventors: Idan Bakish, Boaz Schwartz
  • Publication number: 20190056315
    Abstract: A compact spectrometer system comprising a light source and a spectrometer module and methods of using a spectrometer to determine information related to a property of a mixture are provided. One or more light sources are used to direct light into a mixture. One or more spectrometer modules are used to receive light from a mixture. One or more spectra are measured in response to the received light. A property of the mixture is determined in response to measured spectra.
    Type: Application
    Filed: March 9, 2018
    Publication date: February 21, 2019
    Inventors: Uri KINROT, Damian GOLDRING, Sagee ROSEN, Omer KEILAF, Oren BUSKILA, Eli ZLATKIN, Idan BAKISH, Liron Nunez WEISSMAN, Assaf CARMI, Mor WILK, Elyaqim Oster OSTER
  • Publication number: 20180188110
    Abstract: Apparatus and methods for providing an improved Fabry-Perot interferometer (FPI)-based spectrometer are disclosed herein. The improved FPI-based spectrometer may comprise one or more of a variety of improvements to allow improved sensitivity while retaining high spectral resolution, to limit the susceptibility to stray light, and to limit the degradation in performance due to temporal instabilities in the light source.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 5, 2018
    Inventors: Damian GOLDRING, Elad HEIMAN, Idan BAKISH, Ittai NIR, Sagee ROSEN, Uri KINROT
  • Publication number: 20180172510
    Abstract: A system for analyzing food in a kitchen appliance for one or more of identifying the food, determining nutritional information of the food, and/or monitoring the readiness status of the food. The system may comprise a spectrometer apparatus integrated with the kitchen appliance such as an oven, or spaced apart from the kitchen appliance. The system may comprise a compound parabolic concentrator or a concentrating lens coupled to a spectrometer module and an illumination module of the apparatus. The system may comprise a respective compound parabolic concentrator or a concentrating lens coupled to each of the spectrometer module and illumination module for analyzing food at close range.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 21, 2018
    Inventors: Sagee Rosen, Damian Goldring, Dror Sharon, Uri Kinrot, Idan Bakish, Ittai Nir
  • Publication number: 20180136042
    Abstract: A handheld spectrometer can be configured with a visible aiming beam to allow the user to determine the measured region of the object. When the visible aiming beam comprises the spectrometer measurement beam, the spectrometer measurement beam comprises sufficient energy for the user to see the measurement beam illuminating the object. When the visible aiming beam comprises a separate beam, the visible aiming beam comprises sufficient energy for the user to see a portion of the aiming beam reflected from the object. The visible aiming beam and measurement beam can be arranged to at least partially overlap on the sample, such that the user has an indication of the area of the sample being measured.
    Type: Application
    Filed: August 2, 2017
    Publication date: May 17, 2018
    Inventors: Damian Goldring, Dror Sharon, Sagee Rosen, Ittai Nir, Uri Kinrot, Omer Keilaf, Guy Brodetzki, Amir Levy, Elad Heiman, Idan Bakish