Patents by Inventor Ido Raveh

Ido Raveh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150070766
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh
  • Patent number: 8955968
    Abstract: An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 17, 2015
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Patent number: 8913331
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: December 16, 2014
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh
  • Publication number: 20140029102
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Application
    Filed: August 20, 2013
    Publication date: January 30, 2014
    Applicant: Xceed Imaging Ltd.
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh
  • Publication number: 20140022508
    Abstract: An ophthalmic lens is presented. The lens includes a toric optical zone and a phase-affecting, non-diffractive optical element for extending depth of focus of imaging.
    Type: Application
    Filed: December 20, 2011
    Publication date: January 23, 2014
    Applicant: XCEED IMAGING LTD.
    Inventors: Shai Ben-Yaish, Alex Zlotink, Ido Raveh, Ofer Limon, Oren Yehezkel, Karen Lahav-Yacouel, Michael Goldstein, Zeev Zalevsky
  • Patent number: 8531783
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: September 10, 2013
    Assignee: Xceed Imaging Ltd.
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh
  • Publication number: 20130044289
    Abstract: An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
    Type: Application
    Filed: February 9, 2011
    Publication date: February 21, 2013
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Publication number: 20130046381
    Abstract: An imaging lens structure and method of imaging are presented. The imaging lens structure comprising a lens region defining an effective aperture of the lens structure. The lens region comprises an arrangement of lens zones distributed within the lens region and comprising zones of at least two different optical functions differently affecting light passing therethrough. The zones of at least two different optical functions are arranged in an interlaced fashion along said lens region corresponding to a surface relief of the lens region such that adjacent lens zones of different optical functions are spaced apart from one another along an optical axis of the lens structure a distance larger than a coherence length of light at least one spectral range for which said lens structure is designed.
    Type: Application
    Filed: February 9, 2011
    Publication date: February 21, 2013
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Publication number: 20130033676
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Application
    Filed: February 9, 2011
    Publication date: February 7, 2013
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh, Shai Ben-Yaish, Ofer Limon, Oren Yehezkel, Karen Lahav
  • Publication number: 20110194180
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Application
    Filed: May 17, 2010
    Publication date: August 11, 2011
    Applicant: XCEED IMAGING LTD.
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh
  • Patent number: 7812295
    Abstract: An imaging system is presented for use in multi-range imaging of an object scene by incoherent light. The imaging system comprises aligned a phase mask section, a single focus lens section, and a pixel detector array (PDA). The phase mask section has a generally non-diffractive, narrowly bounded, phase variation corresponding to a profile of a through-object Modulated Transfer Function (MTF) of the imaging system, where the profile has, at an at least one non-zero spatial frequency, at least two regions of growth leading to the MTF higher than 10%.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: October 12, 2010
    Assignee: Xceed Imaging Ltd.
    Inventors: Zeev Zalevsky, Ido Raveh
  • Publication number: 20090147378
    Abstract: An imaging system is presented for use in multi-range imaging of an object scene by incoherent light. The imaging system comprises aligned a phase mask section, a single focus lens section, and a pixel detector array (PDA). The phase mask section has a generally non-diffractive, narrowly bounded, phase variation corresponding to a profile of a through-object Modulated Transfer Function (MTF) of the imaging system, where the profile has, at an at least one non-zero spatial frequency, at least two regions of growth leading to the MTF higher than 10%.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 11, 2009
    Applicant: XCEED IMAGING LTD.
    Inventors: Zeev ZALEVSKY, Ido RAVEH
  • Patent number: 7194139
    Abstract: A method of image compression, comprising: providing image-data encoding light; transforming said light from an image space to a transform space utilizing an optical component; and converting said transformed light into electrical signals, which electrical signals represent a compressed representation of said image data.
    Type: Grant
    Filed: September 5, 1999
    Date of Patent: March 20, 2007
    Assignee: Lenslet Ltd.
    Inventors: Aviram Sariel, David Mendlovic, Uzi Efron, Ido Raveh, Gal Shabtay, Zeev Zalevsky, Uriel Levy, Naim Konforti, Amir Shemer, Dan Shklarsky, Nadav Cohen