Patents by Inventor IGAL KRONHAUS

IGAL KRONHAUS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11781536
    Abstract: Disclosed is a closed drift, narrow channel Hall thruster configured to operate at powers <30 W. The thruster includes a thruster body and a neutralizing cathode. The thruster body includes a magnetic circuit including a magnetic source and two magnetic poles, a metallic, annular thruster channel formed by the magnetic poles with a downstream channel width smaller than about 3 mm and an upstream channel width greater than the downstream channel width, an anode positioned at the channel's entry, and a gas distributor configured to release a propellant gas into the thruster channel. The magnetic circuit is configured to generate a magnetic field in the thruster channel for trapping electrons therein. The channel walls (the magnetic poles) are under bias potential. The anode and the cathode are configured to generate a substantially axial electric field in the thruster channel.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 10, 2023
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventors: Igal Kronhaus, Abraham Warshavsky
  • Patent number: 11530690
    Abstract: A narrow channel Hall thruster comprising a thruster body with a magnetic circuit, an annular thruster channel having a channel width of less than 3 mm formed within the magnetic circuit, an annular anode, a cathode positioned externally to the thruster, and configured for electron emission, a power supply applying a positive potential to the anode, such that a plasma discharge can be generated in the annular thruster channel, and another power supply applying a negative potential to the cathode, relative to the thruster body and the anode. The second power supply reduces its negative voltage output to the cathode when the current supplied by the anode power supply exceeds a predetermined level, indicating that the discharge has reached a stable initiated condition. The reduction of the voltage output of the second power supply can be achieved either by self-regulation, or by use of a current limit circuit.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: December 20, 2022
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventor: Igal Kronhaus
  • Patent number: 11505336
    Abstract: A vacuum arc thruster device having a cathode rod disposed within a concentric insulator tube, and an anode electrode located at the distal edge of the insulator tube, separated from the cathode rod by the insulator tube. A controlled feeding mechanism moves the cathode towards the distal exit plane in a helical motion, the cathode rotating as it moves forward. The cathode rod is fixed in the center of a headless screw segment, which is rotated within a screw thread on the internal surface of a cylindrical wall of the device. As the erosion rate is concentrated at the exit plane, the screw action path enables uniform erosion around the cathode circumference, and cathode linear motion that can be matched to the radial erosion rate. The feeding rate and hence the thrust are proportional to the input power, which can be regulated by the pulse frequency.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 22, 2022
    Assignee: TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
    Inventor: Igal Kronhaus
  • Publication number: 20210010463
    Abstract: Disclosed is a closed drift, narrow channel Hall thruster configured to operate at powers <30 W. The thruster includes a thruster body and a neutralizing cathode. The thruster body includes a magnetic circuit including a magnetic source and two magnetic poles, a metallic, annular thruster channel formed by the magnetic poles with a downstream channel width smaller than about 3 mm and an upstream channel width greater than the downstream channel width, an anode positioned at the channel's entry, and a gas distributor configured to release a propellant gas into the thruster channel. The magnetic circuit is configured to generate a magnetic field in the thruster channel for trapping electrons therein. The channel walls (the magnetic poles) are under bias potential. The anode and the cathode are configured to generate a substantially axial electric field in the thruster channel.
    Type: Application
    Filed: December 13, 2018
    Publication date: January 14, 2021
    Inventors: Igal KRONHAUS, Abraham Warshavsky
  • Publication number: 20200256325
    Abstract: A narrow channel Hall thruster comprising a thruster body with a magnetic circuit, an annular thruster channel having a channel width of less than 3 mm formed within the magnetic circuit, an annular anode, a cathode positioned externally to the thruster, and configured for electron emission, a power supply applying a positive potential to the anode, such that a plasma discharge can be generated in the annular thruster channel, and another power supply applying a negative potential to the cathode, relative to the thruster body and the anode. The second power supply reduces its negative voltage output to the cathode when the current supplied by the anode power supply exceeds a predetermined level, indicating that the discharge has reached a stable initiated condition. The reduction of the voltage output of the second power supply can be achieved either by self-regulation, or by use of a current limit circuit.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 13, 2020
    Inventor: Igal KRONHAUS
  • Publication number: 20190329911
    Abstract: A vacuum arc thruster device having a cathode rod disposed within a concentric insulator tube, and an anode electrode located at the distal edge of the insulator tube, separated from the cathode rod by the insulator tube. A controlled feeding mechanism moves the cathode towards the distal exit plane in a helical motion, the cathode rotating as it moves forward. The cathode rod is fixed in the center of a headless screw segment, which is rotated within a screw thread on the internal surface of a cylindrical wall of the device. As the erosion rate is concentrated at the exit plane, the screw action path enables uniform erosion around the cathode circumference, and cathode linear motion that can be matched to the radial erosion rate. The feeding rate and hence the thrust are proportional to the input power, which can be regulated by the pulse frequency.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 31, 2019
    Inventor: Igal KRONHAUS
  • Patent number: 9334068
    Abstract: Systems and methods for orbit and attitude control of nanosatellites are provided. A spacecraft can be equipped with a plurality of pulsed ablative thrusters (PAT), mounted on at least one of the spacecraft body orientations. The PATs are integrated with the spacecraft structure. The actual spacecraft attitude is measured by a sensor and compared with the desired thrust direction. In order to reduce attitude errors, a control system is used to determine the firing sequence of thrusters. During maneuvering the thrusters are continuously being fired. To conserve energy a thrust switch control is utilized, selecting a single PAT to be fired each pulse. The result of this operation is that the attitude of the spacecraft is adjusted continuously. Therefore, thrust deviation from a selected path can be minimized during orbital maneuvering.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: May 10, 2016
    Assignees: NOA Inc.
    Inventor: Igal Kronhaus
  • Publication number: 20150284112
    Abstract: Systems and methods for orbit and attitude control of nanosatellites are provided. A spacecraft can be equipped with a plurality of pulsed ablative thrusters (PAT), mounted on at least one of the spacecraft body orientations. The PATs are integrated with the spacecraft structure. The actual spacecraft attitude is measured by a sensor and compared with the desired thrust direction. In order to reduce attitude errors, a control system is used to determine the firing sequence of thrusters. During maneuvering the thrusters are continuously being fired. To conserve energy a thrust switch control is utilized, selecting a single PAT to be fired each pulse. The result of this operation is that the attitude of the spacecraft is adjusted continuously. Therefore, thrust deviation from a selected path can be minimized during orbital maneuvering.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 8, 2015
    Applicants: NOA, INC.
    Inventor: IGAL KRONHAUS