Patents by Inventor Igal (Yehuda) Kushnir

Igal (Yehuda) Kushnir has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10756033
    Abstract: Wireless modules having a semiconductor package attached to an antenna package and cap package are disclosed. The semiconductor package may have one or more electronic components disposed thereon. The antenna package may be communicatively coupled to the semiconductor package using by one or more coupling pads. The antenna package may further have one or more radiating elements for transmitting and or receiving wireless signals. The cap package may also be attached to the semiconductor package on a side opposing the side on which the antenna package is disposed. The cap package may provide routing and/or additional antenna elements. The cap package may also allow for thermal grease to be dispensed therethrough. The antenna package, the cap package, and the semiconductor package may have dissimilar number of interconnect layers and/or dissimilar materials of construct.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 25, 2020
    Assignee: Intel IP Corporation
    Inventors: Sidharth Dalmia, Igal Yehuda Kushnir
  • Patent number: 10620297
    Abstract: Aspects of the present disclosure of may comprise an apparatus of a wireless device configurable for wireless communications and radar operations, the apparatus comprising memory. The apparatus may further comprise processing circuitry coupled to the memory, wherein when configured for the radar operations, the processing circuitry is configured to generate a plurality of scanning signals at different frequencies, configure a transceiver to transmit the scanning signals, configure the transceiver to detect radar return signals corresponding to the scanning signals, the radar return signals to be detected concurrently with transmission of the scanning signals, and configure a radar module to receive the scanning signals and the corresponding radar return signals and determine phase and gain differences between the scanning signals and the corresponding radar return signals.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: April 14, 2020
    Assignee: Apple Inc.
    Inventors: Alon Cohen, Yossi Tsfati, Igal Yehuda Kushnir, Noam Kogan
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10418942
    Abstract: Embodiments of a reference path circuit and communication device are generally described herein. The reference path circuit may include an injection locked multiplier (ILM) and a group of one or more buffer amplifiers. The ILM may receive a sinusoidal reference signal from a reference oscillator at a reference frequency. The ILM may generate a sinusoidal ILM output signal at an ILM output frequency that is based on an integer multiple of the reference frequency. The integer multiple of the reference frequency may be within a locking range of the ILM that may be based on a resonant frequency of the ILM. The group of one or more buffer amplifiers may generate an output clock signal for input to the frequency synthesizer. The output clock signal may be based on a sign function of the ILM output signal.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: September 17, 2019
    Assignee: Intel IP Corporation
    Inventors: Igal Yehuda Kushnir, Gil Horovitz, Ronen Kronfeld, Sarit Zur
  • Patent number: 10382043
    Abstract: A system and method for system, method and apparatus for phase hits and microphonics cancellation. In addition to a first RF synthesizer source, a device also includes a second stable reference signal source that operates at a lower frequency as compared to the RF synthesizer source. The second stable reference signal source is selected with good phase noise characteristics and can be used to correct phase error events.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: August 13, 2019
    Assignee: Maxlinear Asia Singapore LTD PTE
    Inventors: Igal Yehuda Kushnir, Ido Mordechai Bettesh, Yaacov Sturkovich
  • Publication number: 20190139915
    Abstract: Wireless modules having a semiconductor package attached to an antenna package and cap package are disclosed. The semiconductor package may have one or more electronic components disposed thereon. The antenna package may be communicatively coupled to the semiconductor package using by one or more coupling pads. The antenna package may further have one or more radiating elements for transmitting and or receiving wireless signals. The cap package may also be attached to the semiconductor package on a side opposing the side on which the antenna package is disposed. The cap package may provide routing and/or additional antenna elements. The cap package may also allow for thermal grease to be dispensed therethrough. The antenna package, the cap package, and the semiconductor package may have dissimilar number of interconnect layers and/or dissimilar materials of construct.
    Type: Application
    Filed: June 3, 2016
    Publication date: May 9, 2019
    Inventors: Sidharth Dalmia, Igal Yehuda Kushnir
  • Publication number: 20180367150
    Abstract: A system and method for system, method and apparatus for phase hits and microphonics cancellation. In addition to a first RF synthesizer source, a device also includes a second stable reference signal source that operates at a lower frequency as compared to the RF synthesizer source. The second stable reference signal source is selected with good phase noise characteristics and can be used to correct phase error events.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 20, 2018
    Inventors: Igal Yehuda Kushnir, Ido Mordechai Bettesh, Yaacov Sturkovich
  • Patent number: 10097188
    Abstract: A system and method for system, method and apparatus for phase hits and microphonics cancellation. In addition to a first RF synthesizer source, a device also includes a second stable reference signal source that operates at a lower frequency as compared to the RF synthesizer source. The second stable reference signal source is selected with good phase noise characteristics and can be used to correct phase error events.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 9, 2018
    Assignee: MAXLINEAR ASIA SINGAPORE PTE LTD
    Inventors: Igal Yehuda Kushnir, Ido Mordechai Bettesh, Yaacov Sturkovich
  • Publication number: 20180180713
    Abstract: Aspects of the present disclosure of may comprise an apparatus of a wireless device configurable for wireless communications and radar operations, the apparatus comprising memory. The apparatus may further comprise processing circuitry coupled to the memory, wherein when configured for the radar operations, the processing circuitry is configured to generate a plurality of scanning signals at different frequencies, configure a transceiver to transmit the scanning signals, configure the transceiver to detect radar return signals corresponding to the scanning signals, the radar return signals to be detected concurrently with transmission of the scanning signals, and configure a radar module to receive the scanning signals and the corresponding radar return signals and determine phase and gain differences between the scanning signals and the corresponding radar return signals.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Inventors: Alon Cohen, Yossi Tsfati, Igal Yehuda Kushnir, Noam Kogan
  • Publication number: 20180102778
    Abstract: A system and method for system, method and apparatus for phase hits and microphonics cancellation. In addition to a first RF synthesizer source, a device also includes a second stable reference signal source that operates at a lower frequency as compared to the RF synthesizer source. The second stable reference signal source is selected with good phase noise characteristics and can be used to correct phase error events.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 12, 2018
    Inventors: Igal Yehuda Kushnir, Ido Mordechai Bettesh, Yaacov Sturkovich
  • Patent number: 9853646
    Abstract: A system and method for system, method and apparatus for phase hits and microphonics cancellation. In addition to a first RF synthesizer source, a device also includes a second stable reference signal source that operates at a lower frequency as compared to the RF synthesizer source. The second stable reference signal source is selected with good phase noise characteristics and can be used to correct phase error events.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: December 26, 2017
    Assignee: Maxlinear Asia Singapore PTE LTD
    Inventors: Igal Yehuda Kushnir, Ido Mordechai Bettesh, Yaacov Sturkovich
  • Publication number: 20170353159
    Abstract: Embodiments of a reference path circuit and communication device are generally described herein. The reference path circuit may include an injection locked multiplier (ILM) and a group of one or more buffer amplifiers. The ILM may receive a sinusoidal reference signal from a reference oscillator at a reference frequency. The ILM may generate a sinusoidal ILM output signal at an ILM output frequency that is based on an integer multiple of the reference frequency. The integer multiple of the reference frequency may be within a locking range of the ILM that may be based on a resonant frequency of the ILM. The group of one or more buffer amplifiers may generate an output clock signal for input to the frequency synthesizer. The output clock signal may be based on a sign function of the ILM output signal.
    Type: Application
    Filed: June 2, 2016
    Publication date: December 7, 2017
    Inventors: Igal Yehuda KUSHNIR, GIL HOROVITZ, Ronen Kronfeld, SARIT ZUR
  • Patent number: 9407271
    Abstract: A method and system is provided for sharing of bandwidth on intermediate frequency cabling connections between indoor and outdoor units of a MIMO microwave communications system. Phase locked loop design assists in creating synchronization signals to be transmitted over the cable connecting the indoor units and outdoor units.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: August 2, 2016
    Assignee: BROADCOM CORPORATION
    Inventors: Yaacov Sturkovich, Igal Yehuda Kushnir
  • Publication number: 20160204909
    Abstract: A system and method for system, method and apparatus for phase hits and microphonics cancellation. In addition to a first RF synthesizer source, a device also includes a second stable reference signal source that operates at a lower frequency as compared to the RF synthesizer source. The second stable reference signal source is selected with good phase noise characteristics and can be used to correct phase error events.
    Type: Application
    Filed: February 5, 2015
    Publication date: July 14, 2016
    Inventors: Igal Yehuda Kushnir, Ido Mordechai Bettesh, Yaacov Sturkovich
  • Patent number: 9172407
    Abstract: A communication apparatus includes transmission circuitry and a frequency conversion unit. The transmission circuitry is configured to down-convert an input Intermediate Frequency (IF) signal using a transmit (TX) Local Oscillator (LO) signal so as to produce a TX baseband signal, to up-convert the TX baseband signal to produce an output Radio Frequency (RF) signal, and to send the output RF signal to an antenna. The frequency correction unit is configured to estimate a frequency of the TX baseband signal or of the input IF signal, and to adjust the TX LO signal based on the estimated frequency so as to cause the transmission circuitry to down-convert the input IF signal to a predefined target frequency.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 27, 2015
    Assignee: Broadcom Semiconductors Israel Ltd.
    Inventors: Igal Yehuda Kushnir, Jonathan Friedmann, Ronen Shaked, Tzahi Oren
  • Patent number: 9136230
    Abstract: Embodiments described herein include an integrated circuit (IC) device. For example, the IC device can include a substrate configured to be coupled to a printed circuit board (PCB), an IC die attached to the substrate, and a waveguide launcher formed on the substrate. The waveguide launcher is electrically coupled to the IC die through the substrate.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: September 15, 2015
    Assignee: Broadcom Corporation
    Inventors: Sergei Demin, Shaul Klein, Igal Yehuda Kushnir