Patents by Inventor Igor Altman

Igor Altman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402740
    Abstract: A system and method of constructing a 3D model of surface may include: sequentially acquiring multiple pairs of stereoscopic images of a surface from a stereoscopic camera; and incrementally constructing a 3D model of the surface from the image pairs, concurrently with the sequential image acquisition.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: August 2, 2022
    Assignee: CHERRY IMAGING LTD.
    Inventors: Vardit Eckhouse, Oded Cohen, Igor Altman
  • Publication number: 20210191251
    Abstract: A system and method of constructing a 3D model of surface may include: sequentially acquiring multiple pairs of stereoscopic images of a surface from a stereoscopic camera; and incrementally constructing a 3D model of the surface from the image pairs, concurrently with the sequential image acquisition.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Inventors: Vardit Eckhouse, Oded Cohen, Igor Altman
  • Patent number: 10942439
    Abstract: A system, comprising: a stereoscopic camera configured to acquire multiple pairs of images of a surface; a display; and a processor configured to: sequentially acquire multiple image pairs of a surface from the camera; incrementally construct a 3D model from the image pairs concurrently with the sequential image acquisition, by: for each currently acquired image pair, registering the currently acquired image pair to a location on the 3D model, and adding the currently acquired image pair to the 3D model when: a) the registration succeeds and b) a delta of the registered image pair exceeds a threshold; rendering the incremental construction of the 3D model on the display; and concurrently tracking the incremental construction by displaying a graphic indicator that simultaneously indicates: i) the registered location, ii) when the viewing distance is within a focal range, and iii) when the viewing distance is not within a focal range.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 9, 2021
    Assignee: EVA—ESTHETIC VISUAL ANALYTICS LTD.
    Inventors: Vardit Eckhouse, Oded Cohen, Igor Altman
  • Publication number: 20200089097
    Abstract: A system, comprising: a stereoscopic camera configured to acquire multiple pairs of images of a surface; a display; and a processor configured to: sequentially acquire multiple image pairs of a surface from the camera; incrementally construct a 3D model from the image pairs concurrently with the sequential image acquisition, by: for each currently acquired image pair, registering the currently acquired image pair to a location on the 3D model, and adding the currently acquired image pair to the 3D model when: a) the registration succeeds and b) a delta of the registered image pair exceeds a threshold; rendering the incremental construction of the 3D model on the display; and concurrently tracking the incremental construction by displaying a graphic indicator that simultaneously indicates: i) the registered location, ii) when the viewing distance is within a focal range, and iii) when the viewing distance is not within a focal range.
    Type: Application
    Filed: December 21, 2017
    Publication date: March 19, 2020
    Inventors: Vardit ECKHOUSE, Oded COHEN, Igor ALTMAN
  • Publication number: 20150191616
    Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
    Type: Application
    Filed: March 20, 2015
    Publication date: July 9, 2015
    Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan
  • Patent number: 9006720
    Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: April 14, 2015
    Assignee: NanoGram Corporation
    Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan
  • Patent number: 8895962
    Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: November 25, 2014
    Assignee: NanoGram Corporation
    Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan
  • Publication number: 20110318905
    Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
    Type: Application
    Filed: March 23, 2011
    Publication date: December 29, 2011
    Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan
  • Publication number: 20110120537
    Abstract: High quality silicon inks are used to form polycrystalline layers within thin film solar cells having a p-n junction. The particles deposited with the inks can be sintered to form the silicon film, which can be intrinsic films or doped films. The silicon inks can have a z-average secondary particle size of no more than about 250 nm as determined by dynamic light scattering on an ink sample diluted to 0.4 weight percent if initially having a greater concentration. In some embodiments, an intrinsic layer can be a composite of an amorphous silicon portion and a crystalline silicon portion.
    Type: Application
    Filed: September 21, 2010
    Publication date: May 26, 2011
    Inventors: Goujun Liu, Clifford M. Morris, Igor Altman, Uma Srinivasan, Shivkumar Chiruvolu
  • Patent number: 7781060
    Abstract: Hollow silica nanoparticles can have well defined non-porous shells with low shell fragmentation and good dispersability. These well defined hollow particles can be formed through the controlled oxidation of silicon nanoparticles in an organic solvent. The hollow nanoparticles can have a submicron secondary particle sizes. The hollow silica nanoparticles can be incorporated into polymer composites, such as low index-of-refraction composites, for appropriate applications.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 24, 2010
    Assignee: NanoGram Corporation
    Inventors: Weidong Li, Shivkumar Chiruvolu, Hui Du, Igor Altman, Ronald J. Mosso, Nobuyuki Kambe
  • Publication number: 20090095128
    Abstract: Light-driven flow reactors are configured with an aerosol delivery apparatus that is designed to improve the reactive process with respect to forming uniform product compositions at higher rates. In particular, the reactant delivery system can deliver an aerosol having an average droplet size of no more than about 50 microns, and in some embodiments 20 microns, and with less than 1 droplet in 10,000 having a diameter greater than 5 times the average droplet size. In some embodiments, the edge of the aerosol generator can be placed within about 6 centimeters of the edge of the light beam passing through the reaction chamber. The average aerosol velocity can be no more than about 5 meters per second. In some embodiments, the aerosol generator can comprise a non-circular opening and a gas permeable structure that is used to generate a mist that is delivered from the apparatus as an aerosol.
    Type: Application
    Filed: September 18, 2008
    Publication date: April 16, 2009
    Inventors: Bernard M. Frey, Peter R. Buerki, Robert B. Lynch, Janet L. Wang, Gabriel Tran, Craig R. Horne, Dean M. Holunga, Igor Altman
  • Publication number: 20080145641
    Abstract: Hollow silica nanoparticles can have well defined non-porous shells with low shell fragmentation and good dispersability. These well defined hollow particles can be formed through the controlled oxidation of silicon nanoparticles in an organic solvent. The hollow nanoparticles can have a submicron secondary particle sizes. The hollow silica nanoparticles can be incorporated into polymer composites, such as low index-of-refraction composites, for appropriate applications.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 19, 2008
    Inventors: Weidong Li, Shivkumar Chiruvolu, Hui Du, Igor Altman, Ronald J. Mosso, Nobuyuki Kambe
  • Publication number: 20070215837
    Abstract: Collections of phosphor particles have achieved improved performance based on improved material properties, such as crystallinity. Display devices can be formed with these improved submicron phosphor particles. Improved processing methods contribute to the improved phosphor particles, which can have high crystallinity and a high degree of particle size uniformity. Dispersions and composites can be effectively formed from the powders of the submicron particle collections.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 20, 2007
    Inventors: Shivkumar Chiruvolu, Weidong Li, Igor Altman, Hui Du, Nobuyuki Kambe, Ronald J. Mosso
  • Publication number: 20040110005
    Abstract: The present invention relates to substantially spherical carbon nano particle having a novel structure, which comprises a plurality of layers formed by planar and curved graphene sheets which are connected to each other and a hollow inner core. The carbon nano particles of the present invention has field emission properties comparable to those of carbon nanotubes and can be advantageously used in such industries as aerospace, biotechnology, environmental energy, materials, medicine, electronics.
    Type: Application
    Filed: February 28, 2003
    Publication date: June 10, 2004
    Inventors: Man Soo Choi, Young-Jeong Kim, Ji-Hyun Yi, Igor Altman, Perto Pikhitsa