Patents by Inventor Igor Berlin

Igor Berlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160065320
    Abstract: Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
    Type: Application
    Filed: November 9, 2015
    Publication date: March 3, 2016
    Inventors: Igor Berlin, Dragan Pikula, Michael Sauer, Gerald B. Schmidt
  • Patent number: 9247543
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: January 26, 2016
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Patent number: 9240835
    Abstract: A system, and related methods and devices, is disclosed for increasing an output power of a frequency band in a distributed antenna system that includes at least one RXU module that is operatively coupled to at least one RAU module. A first group of the plurality of channels within a first frequency band may be allocated to the RAU module, and a second group of the plurality of the channels within the first frequency band may be allocated to the RXU module. The at least one RAU module may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band, and the at least one RXU module may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: January 19, 2016
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William P. Cune, Jason E. Greene
  • Publication number: 20160013844
    Abstract: A system, and related methods and devices, is disclosed for increasing an output power of a frequency band in a distributed antenna system that includes at least one RXU module that is operatively coupled to at least one RAU module. A first group of the plurality of channels within a first frequency band may be allocated to the RAU module, and a second group of the plurality of the channels within the first frequency band may be allocated to the RXU module. The at least one RAU module may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band, and the at least one RXU module may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased.
    Type: Application
    Filed: September 23, 2015
    Publication date: January 14, 2016
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene
  • Publication number: 20160014558
    Abstract: A system, and related methods and devices, is disclosed for documenting a location of installed equipment. The system includes a mobile reader and a memory. The mobile reader is configured to read a unique identification of an equipment unit and to determine a location of the equipment unit while proximate the equipment unit. The location and the unique identification of the equipment unit is associated and stored in the memory. The memory may be located in the mobile reader or in a remotely located database. The mobile reader may be an optical reader configured to read the unique identification from an optical barcode associated with the equipment unit, or the mobile reader may be an RFID reader configured to read the unique identification from an RFID tag associated with the equipment unit.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 14, 2016
    Inventors: Igor Berlin, Ami Hazani
  • Patent number: 9184843
    Abstract: Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to be uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 10, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dragan Pikula, Michael Sauer, Gerald B. Schmidt
  • Patent number: 9158864
    Abstract: A system, and related methods and devices, is disclosed for documenting a location of installed equipment. The system includes a mobile reader and a memory. The mobile reader is configured to read a unique identification of an equipment unit and to determine a location of the equipment unit while proximate the equipment unit. The location and the unique identification of the equipment unit is associated and stored in the memory. The memory may be located in the mobile reader or in a remotely located database. The mobile reader may be an optical reader configured to read the unique identification from an optical barcode associated with the equipment unit, or the mobile reader may be an RFID reader configured to read the unique identification from an RFID tag associated with the equipment unit.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 13, 2015
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Ami Hazani
  • Patent number: 9130613
    Abstract: The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: September 8, 2015
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Yair Oren, Igor Berlin, Ofer Saban, Isaac Shapira, Rami Reuven
  • Publication number: 20150195038
    Abstract: Distributed antenna systems supporting digital data signal propagation between remote antenna clusters, and related distributed antenna systems, components and methods are disclosed. The distributed antenna systems facilitate distributing digital data signals to provide digital data services remotely to distributed remote antenna units. The digital data signals may be propagated between remote antenna units within a remote antenna cluster for digital data signals transmitted to wireless client devices in the distributed antenna system and for digital data signals received from wireless client devices in the distributed antenna system. Received digital data signals from wireless client devices can be propagated from remote antenna unit to remote antenna unit in a remote antenna cluster until the digital data signals reach a wired network device for communication over a network.
    Type: Application
    Filed: March 20, 2015
    Publication date: July 9, 2015
    Inventors: Igor Berlin, Dan Harris, Michael Sauer
  • Patent number: 9037143
    Abstract: Distributed antenna systems supporting digital data signal propagation between remote antenna clusters, and related distributed antenna systems, components and methods are disclosed. The distributed antenna systems facilitate distributing digital data signals to provide digital data services remotely to distributed remote antenna units. The digital data signals may be propagated between remote antenna units within a remote antenna cluster for digital data signals transmitted to wireless client devices in the distributed antenna system and for digital data signals received from wireless client devices in the distributed antenna system. Received digital data signals from wireless client devices can be propagated from remote antenna unit to remote antenna unit in a remote antenna cluster until the digital data signals reach a wired network device for communication over a network.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 19, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dan Harris, Michael Sauer
  • Patent number: 9019929
    Abstract: The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: April 28, 2015
    Assignee: Corning Optical Communications Wireless, Ltd.
    Inventors: Igor Berlin, Yair Oren, Rami Reuven, Ofer Saban, Isaac Shapira
  • Publication number: 20150031316
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: Corning MobileAccess Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Patent number: 8934443
    Abstract: The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: January 13, 2015
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Yair Oren, Rami Reuven, Ofer Saban, Isaac Shapira
  • Patent number: 8913892
    Abstract: Distributed antenna systems in which the distributed antenna systems can be sectorized. Radio bands distributed by the distributed antenna systems are allocated to one or more sectors. The antenna units in the distributed antenna systems are also allocated to one or more sectors. In this manner, only radio frequency (RF) communications signals in the radio band(s) allocated to given sector(s) are distributed the antenna unit allocated to the same sector(s). The bandwidth capacity of the antenna unit is split among the radio band(s) allocated to sector(s) allocated to the antenna unit. The sectorization of the radio band(s) and the antenna units can be configured and/or altered based on capacity needs for given radio bands in antenna coverage areas provide by the antenna units.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: December 16, 2014
    Assignee: Coring Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliot Greene, Michael Sauer, Gerald Bernhart Schmidt
  • Patent number: 8873585
    Abstract: The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 28, 2014
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Yair Oren, Igor Berlin, Ofer Saban, Isaac Shapira, Rami Reuven
  • Publication number: 20140212144
    Abstract: The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Application
    Filed: April 1, 2014
    Publication date: July 31, 2014
    Applicant: Corning Optical Communications Wireless, LTD
    Inventors: Igor Berlin, Yair Oren, Rami Reuven, Ofer Saban, Isaac Shapira
  • Publication number: 20140211875
    Abstract: The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: Corning Optical Communications Wireless, LTD
    Inventors: Igor Berlin, Yair Oren, Rami Reuven, Ofer Saban, Isaac Shapira
  • Publication number: 20140180581
    Abstract: A system, and related methods and devices, is disclosed for documenting a location of installed equipment. The system includes a mobile reader and a memory. The mobile reader is configured to read a unique identification of an equipment unit and to determine a location of the equipment unit while proximate the equipment unit. The location and the unique identification of the equipment unit is associated and stored in the memory. The memory may be located in the mobile reader or in a remotely located database. The mobile reader may be an optical reader configured to read the unique identification from an optical barcode associated with the equipment unit, or the mobile reader may be an RFID reader configured to read the unique identification from an RFID tag associated with the equipment unit.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: Corning MobileAccess Ltd.
    Inventors: Igor Berlin, Ami Hazani
  • Publication number: 20140126914
    Abstract: Optical fiber-based distributed antenna systems that support multiple-input, multiple-output (MIMO) antenna configurations and communications. Embodiments disclosed herein include optical fiber-based distributed antenna system that can be flexibly configured to support or not support MIMO communications configurations. In one embodiment, first and second MIMO communication paths are shared on the same optical fiber using frequency conversion to avoid interference issues, wherein the second communication path is provide to a remote extension unit to remote antenna unit. In another embodiment, the optical fiber-based distributed antenna systems may be configured to allow to provide MIMO communication configurations with existing components. Existing capacity of system components are employed to create second communication paths for MIMO configurations, thereby reducing overall capacity, but allowing avoidance of frequency conversion components and remote extension units.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 8, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Igor Berlin, William Patrick Cune, Jessica Joy Kedziora, Michael Sauer, Gerald Bernhart Schmidt, Wolfgang Gottfried Tobias Schweiker
  • Publication number: 20140072071
    Abstract: A method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicant: Corning MobileAccess Ltd.
    Inventors: Igor Berlin, Yair Oren, Rami Reuven, Ofer Saban, Isaac Shapira