Patents by Inventor Igor Getman

Igor Getman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068895
    Abstract: A differential pressure sensor for determining the differential pressure between two pressures includes a converter chamber including a differential pressure measuring cell, and a measuring unit including a main body and a coplanar double-membrane system with two double membranes, each including a separating membrane and an overload membrane with a pressure chamber between the separating membrane and the overload membrane and an additional pressure chamber between the overload membrane and the main body.
    Type: Application
    Filed: December 16, 2020
    Publication date: February 29, 2024
    Inventors: Thomas Uehlin, Florian Gutmann, Alexander Beck, Igor Getman, Benjamin Mack, Michael Noack, Michael Hügel
  • Publication number: 20240068896
    Abstract: A differential pressure transducer with overload protection includes a measuring element body, two separating diaphragms, two overload diaphragms with radially variable material thickness h(r), a differential pressure transducer for converting a pressure difference into an electrical signal, and two hydraulic paths. The overload diaphragms are connected to the measuring element body to form overload chambers and the separating diaphragms are connected to the measuring element body to form separating diaphragm chambers in which one of the overload diaphragms are enclosed. The separating diaphragm chambers are hydraulically connected to the overload chambers below the other separating diaphragm chamber and to the differential pressure transducer via one of the hydraulic paths, which extend at least in sections through the measuring element body.
    Type: Application
    Filed: November 26, 2021
    Publication date: February 29, 2024
    Inventors: Thomas Uehlin, Igor Getman, Benjamin Mack
  • Patent number: 11846555
    Abstract: Disclosed is a pressure gauge comprising a pressure sensor and a pressure transmitter connected upstream of the pressure sensor and having an isolation diaphragm enclosing a pressure receiving chamber. A hydraulic pressure transmission path is connected to the pressure receiving chamber and is filled with a pressure transmitting fluid that transmits the pressure acting on the outer side of the isolation diaphragm to the pressure sensor The pressure gauge allows functional impairments of the pressure gauge to be detected early without having to change the pressure acting on the outer side of the isolation diaphragm. The pressure transmitter comprises an electronically activatable deflection device which is designed in such a way that, when activated, it exerts a constant force deflecting the isolation diaphragm, on the isolation diaphragm, or on an element connected to the isolation diaphragm.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: December 19, 2023
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Sergey Lopatin, Igor Getman
  • Publication number: 20230026285
    Abstract: A separating membrane includes: a planar edge region for the joining of the separating membrane to a diaphragm seal body; a working region offset in an axial direction relative to the edge region; and a transition region between the edge region and the working region, wherein the transition region extends over a radial region of not more than one quarter of an outer radius of the transition region, wherein the working region has a substantially planar center and an embossed pattern or undulation pattern between the center and an outer edge of the working region, wherein from the rest position to a point of deflection with a dimensionless pressure equivalent, the separating membrane has a characteristic curve in which, for a coefficient of determination R2 of a linear regression of the characteristic curve, the following applies: (1?R2)<1%.
    Type: Application
    Filed: December 1, 2020
    Publication date: January 26, 2023
    Inventors: Andreas Krumbholz, Davide Parrotto, Igor Getman
  • Publication number: 20230013563
    Abstract: A field device for processing and automation technology includes a first and a second component that can each be mechanically connected at a joining surface by means of a joining point. Two metal surface layers are each applied at least to the joining surface of the first component and the joining surface of the second component. The metal of the surface layers is different from the metal of the first and/or the metal of the second component. A joining material is applied between the respective joining surfaces of the two components, wherein the joining material includes particles at least partially consisting of a metal that corresponds with the metal of the surface layers The joining of the two components occurs at a joining temperature below 300° C.
    Type: Application
    Filed: November 20, 2020
    Publication date: January 19, 2023
    Inventors: Sergey Lopatin, Igor Getman, Dietmar Leuthner, Pablo Ottersbach
  • Publication number: 20220065725
    Abstract: Disclosed is a pressure gauge comprising a pressure sensor and a pressure transmitter connected upstream of the pressure sensor and having an isolation diaphragm enclosing a pressure receiving chamber. A hydraulic pressure transmission path is connected to the pressure receiving chamber and is filled with a pressure transmitting fluid that transmits the pressure acting on the outer side of the isolation diaphragm to the pressure sensor The pressure gauge allows functional impairments of the pressure gauge to be detected early without having to change the pressure acting on the outer side of the isolation diaphragm. The pressure transmitter comprises an electronically activatable deflection device which is designed in such a way that, when activated, it exerts a constant force deflecting the isolation diaphragm, on the isolation diaphragm, or on an element connected to the isolation diaphragm.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 3, 2022
    Inventors: Sergey Lopatin, Igor Getman
  • Publication number: 20220042869
    Abstract: Disclosed is a pressure gauge comprising a pressure sensor, a pressure transmitter connected upstream of the pressure sensor and having an isolation diaphragm, the outer side of which can be supplied with pressure and under which a pressure receiving chamber is enclosed, and comprising a hydraulic pressure transmission path connected to the pressure receiving chamber and filled with a pressure transmitting fluid. The diaphragm seal comprises a deflection device actuated by a controller connected to the pressure sensor and/or to a temperature sensor, and which is designed to exert a force on the isolation diaphragm, or on an element connected to the isolation diaphragm, said force deflecting the isolation diaphragm in the direction of its diaphragm bed, at times that are determined by the controller and that are based on a pressure measured continuously by the pressure sensor and/or a temperature measured continuously by the temperature sensor.
    Type: Application
    Filed: November 21, 2019
    Publication date: February 10, 2022
    Inventors: Sergey Lopatin, Igor Getman
  • Patent number: 10591377
    Abstract: A pressure transfer module for transfer of pressures less equals 100 mbar, and suitable for high temperature applications, comprising an isolating diaphragm outwardly sealing a first pressure chamber; a transfer diaphragm outwardly sealing a second pressure chamber; and a pressure transfer path connecting the first pressure chamber with the second pressure chamber. The first and the second pressure chambers and the pressure transfer path are filled with a pressure transfer liquid, via which a pressure acting externally on the isolating diaphragm is transmitted to the transfer diaphragm. The pressure transfer liquid is under a pre-pressure, especially a pre-pressure of greater than or equal to 30 mbar, especially greater than or equal to 50 mbar.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: March 17, 2020
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Dieter Funken, Igor Getman, Sergej Lopatin
  • Publication number: 20180299340
    Abstract: A pressure transfer module for transfer of pressures, less equals 100 mbar, and suitable for high temperature applications, comprising an isolating diaphragm outwardly sealing a first pressure chamber; a transfer diaphragm outwardly sealing a second pressure chamber; and a pressure transfer path connecting the first pressure chamber with the second pressure chamber. The first and the second pressure chambers and the pressure transfer path are filled with a pressure transfer liquid, via which a pressure acting externally on the isolating diaphragm is transmitted to the transfer diaphragm. The pressure transfer liquid is under a pre-pressure, especially a pre-pressure of greater than or equal to 30 mbar, especially greater than or equal to 50 mbar.
    Type: Application
    Filed: May 31, 2016
    Publication date: October 18, 2018
    Inventors: Dieter Funken, Igor Getman, Sergej Lopatin
  • Publication number: 20170315010
    Abstract: A field device used in process and/or automation engineering for monitoring at least one chemical or physical process variable of a medium in a component carrying a medium at least partially and temporarily and comprising at least an electronic unit and a sensor unit. At least one portion of at least one component of the sensor unit is in contact with the medium at least temporarily. The at least one portion of the component in contact with the medium is provided with a chemically resistant multilayered coating consisting of at least two layers, wherein a first layer is made of a material consisting of a densely packed atomic arrangement which provides a protection against corrosion by said medium, and a second layer consisting of a chemically resistant plastic material is arranged around the first layer and protects the first layer against outer damage and corrosion.
    Type: Application
    Filed: August 19, 2015
    Publication date: November 2, 2017
    Inventors: Thomas Sulzer, Peter Seefeld, Sergej Lopatin, Mike Touzin, Igor Getman, Dieter Funken
  • Patent number: 9470773
    Abstract: A method for operating a pressure sensor, which includes a measuring membrane, at least one platform and a capacitive transducer having two pressure dependent capacitances between electrodes on the measuring membrane. The measuring membrane divides a volume pressure-tightly into two volume portions, wherein the second volume portion is enclosed in a measuring chamber between the measuring membrane and the platform. A deflection of the measuring membrane depends on a pressure measurement variable p, which is a difference between a first pressure p1 and second pressure p2 in the volume portions. The pressure measurement variable p follows from both capacitances, wherein, for an intact pressure sensor, the second capacitance is a predetermined function of the first capacitance and, in given cases, the temperature.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: October 18, 2016
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Thomas Uehlin, Elmar Wosnitza, Igor Getman
  • Patent number: 9442033
    Abstract: A pressure difference sensor includes a measuring membrane, which is arranged between two platforms and connected pressure-tightly with the platforms, in each case, via a first insulating layer for forming pressure chambers between the platforms and the measuring membrane. The insulating layer is especially silicon oxide, wherein the pressure difference sensor further includes an electrical transducer for registering a pressure dependent deflection of the measuring membrane. The platforms have support positions, against which the measuring membrane lies at least partially in the case of overload, wherein the support positions have position dependent heights, characterized in that the support positions are formed in the first insulating layer by isotropic etching, and the particular height h of a support position, in each case, is a function of a distance from a base of the support position in the reference plane.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: September 13, 2016
    Assignee: Endress + GmbH + Co. KG
    Inventors: Igor Getman, Rafael Teipen, Thomas Link, Peter Nommensen
  • Publication number: 20150260598
    Abstract: A pressure difference sensor includes a measuring membrane, which is arranged between two platforms and connected pressure-tightly with the platforms, in each case, via a first insulating layer for forming pressure chambers between the platforms and the measuring membrane. The insulating layer is especially silicon oxide, wherein the pressure difference sensor further includes an electrical transducer for registering a pressure dependent deflection of the measuring membrane. The platforms have support positions, against which the measuring membrane lies at least partially in the case of overload, wherein the support positions have position dependent heights, characterized in that the support positions are formed in the first insulating layer by isotropic etching, and the particular height h of a support position, in each case, is a function of a distance from a base of the support position in the reference plane.
    Type: Application
    Filed: September 24, 2013
    Publication date: September 17, 2015
    Inventors: Igor Getman, Rafael Teipen, Thomas Link, Peter Nommensen
  • Patent number: 8746073
    Abstract: A method for the compensating temperature gradient influences on a pressure measuring transducer, comprising the steps of: registering a pressure signal Sp(t); registering a temperature signal T(t); ascertaining a pressure measured value ps(Sp(t), T(t)); determining the time derivative of the temperature signal dT/dt; correcting the pressure measured value with a correction function, which depends on the time derivative, wherein, as a function of the sign of the time derivative, another correction function is selected, or other coefficients in a function of equal type are selected.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: June 10, 2014
    Assignee: Endress + GmbH + Co. KG
    Inventors: Igor Getman, Manuel Bondi-Liedtke, Thomas Uehlin, Elmar Wosnitza
  • Publication number: 20140144206
    Abstract: A method for operating a pressure sensor, which includes a measuring membrane, at least one platform and a capacitive transducer having two pressure dependent capacitances between electrodes on the measuring membrane The measuring membrane divides a volume pressure-tightly into two volume portions, wherein the second volume portion is enclosed in a measuring chamber between the measuring membrane and the platform. A deflection of the measuring membrane depends on a pressure measurement variable p, which is a difference between a first pressure p1 and second pressure p2 in the volume portions. The pressure measurement variable p follows from both capacitances, wherein, for an intact pressure sensor, the second capacitance is a predetermined function of the first capacitance and, in given cases, the temperature.
    Type: Application
    Filed: June 1, 2012
    Publication date: May 29, 2014
    Applicant: Endress + Hauser GmbH + Co. KG
    Inventors: Thomas Uehlin, Elmar Wosnitza, Igor Getman
  • Patent number: 8384170
    Abstract: A piezoresistive pressure sensor is especially suitable for measuring smaller pressures and has a small linearity error. The pressure sensor is manufactured from a BESOI wafer having first and second silicon layers and an oxide layer arranged therebetween. The pressure sensor includes, formed from the first silicon layer of the BESOI wafer, an active layer, in which piezoresistive elements are doped, and, formed from the second silicon layer of the BESOI wafer, a membrane carrier, which externally surrounds a cavity in the second silicon layer, via which a membrane forming region of the active layer and an oxide layer associated therewith are exposed, wherein, in an outer edge of the region of the oxide layer exposed by the cavity, a groove is provided surrounding the region.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: February 26, 2013
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Igor Getman, Anh Tuan Tham, Dieter Stolze
  • Patent number: 8304844
    Abstract: A pressure measuring device having a pedestal, an intermediate piece of semiconductor arranged on the pedestal and, connected with the pedestal and arranged on the intermediate piece and connected with the intermediate piece, a semiconductor pressure sensor having a support and a measuring membrane, or diaphragm. The pressure measuring device offers reliable protection of the sensitive measuring membrane, or diaphragm, against mechanical distortions. Provided extending in the interior of the intermediate piece is an annular cavity, which surrounds a first cylindrical section and, pedestal end thereof, a second cylindrical section of the intermediate piece. The second cylindrical section has a greater outer diameter than the first cylindrical section. The cavity is open on an end of the intermediate piece toward the pedestal.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 6, 2012
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Igor Getman, Dieter Stolze, Anh Tuan Tham
  • Patent number: 8210048
    Abstract: A pressure transfer device comprises a pressure transfer device body and an isolating diaphragm, wherein, between the surface of the body of the pressure transmitting device and the isolating diaphragm, a pressure chamber is formed, whose volume is dependent on the position of the isolating diaphragm. The isolating diaphragm has a material thickness and a deflectable working region with an area A, wherein the isolating diaphragm has a reference position, in which the pressure chamber contains a reference volume Vref, and the isolating diaphragm is deflectable from the reference position at least so far in two directions, that the volume of the pressure chamber varies between values of up to Vref+/??Vdesired, wherein associated with a volume change ?V is a dimensionless deflection measure w, with w(?V):=(3·?V)/(A·h), wherein ?Vdesired is dimensioned in such a way, that |w(?Vdesired)|?2.5; wherein, in the case of all w(?V), for which |w(?V)|?|w?(?V)|, wherein |w?(?V)|?0.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: July 3, 2012
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Dieter Funken, Igor Getman
  • Publication number: 20120118065
    Abstract: A method for the compensating temperature gradient influences on a pressure measuring transducer, comprising the steps of: registering a pressure signal Sp(t); registering a temperature signal T(t); ascertaining a pressure measured value ps(Sp(t), T(t)); determining the time derivative of the temperature signal dT/dt; correcting the pressure measured value with a correction function, which depends on the time derivative, wherein, as a function of the sign of the time derivative, another correction function is selected, or other coefficients in a function of equal type are selected.
    Type: Application
    Filed: June 22, 2010
    Publication date: May 17, 2012
    Inventors: Igor Getman, Manuel Biondi Liedtke, Thomas Uehlin, Elmar Wosnitza
  • Patent number: 8127615
    Abstract: A method for embossing a separating membrane of a pressure transfer means including a membrane carrier having a membrane bed. With the method, an optimal forming of the separating membrane matched to the form of the membrane bed is achievable. The method includes steps of: welding a planar, separating membrane blank onto the membrane carrier; filling with a lubricant a pressure receiving chamber enclosed by the welded, separating membrane blank and the membrane carrier; producing the separating membrane from the separating membrane blank by embossing the separating membrane blank by pressing it against the membrane bed while lubricant is present in the pressure receiving chamber.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: March 6, 2012
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Wolfgang Dannhauer, Igor Getman, Harri Notacker