Patents by Inventor Igor Gofman

Igor Gofman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180358828
    Abstract: A system and method is described for rapid charging and power management of a battery for a meter. A charger component is operably associated with the meter and is capable of executing a rapid charge algorithm for a rechargeable battery. The algorithm includes monitoring for a connection to an external power source and implementing a charging routine of a battery at a first charge rate and then at a second charge rate. The second charge rate is lower than the first charge rate. A temperature rise in the rechargeable battery due to the first charge rate has a negligible heat transfer effect on the fluid sample. The meter can also include a power switch for controlling current flow to a battery fuel gauge. The power switch is open when the meter enters into a sleep mode. The state of battery charge is determined after the meter exits the sleep mode.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 13, 2018
    Inventors: Igor Gofman, Jun Chen
  • Patent number: 10113987
    Abstract: An analyte meter to detect an analyte concentration level in a bio-fluid sample may be cleaned and disinfected with a cleaning liquid without harming electrical and internal meter components. In some embodiments, the analyte meter is washable and immersable and may include a sealed sensor connector, sealed battery connector, and possibly a sealed USB connector that may be subjected to a cleaning liquid without the liquid entering an internal chamber of the analyte meter and contacting internal electronic components. In some embodiments, a sealed display screen and sealed keypad are provided such that liquids are prevented from entering the internal chamber. Manufacturing methods and systems utilizing the analyte sensors are provided, as are numerous other aspects.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: October 30, 2018
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Eugene Prais, David Huang, James A. Johnson, Igor Gofman, Jun Chen
  • Patent number: 10050458
    Abstract: A system and method is described for rapid charging and power management of a battery for a meter. A charger component is operably associated with the meter and is capable of executing a rapid charge algorithm for a rechargeable battery. The algorithm includes monitoring for a connection to an external power source and implementing a charging routine of a battery at a first charge rate and then at a second charge rate. The second charge rate is lower than the first charge rate. A temperature rise in the rechargeable battery due to the first charge rate has a negligible heat transfer effect on the fluid sample. The meter can also include a power switch for controlling current flow to a battery fuel gauge. The power switch is open when the meter enters into a sleep mode. The state of battery charge is determined after the meter exits the sleep mode.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 14, 2018
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Igor Gofman, Jun Chen
  • Publication number: 20180177438
    Abstract: Embodiments herein provide detection of contamination at one or more contacts of a sensor system. The sensor system includes a sensor assembly and an electronics assembly communicatively coupled together by one or more contacts. The sensor assembly passes a sensor signal to the electronics assembly for further processing. The electronics assembly includes a detection contact for detecting contamination on or near one or more contacts of the sensor assembly and/or the electronics assembly. A switch selectively couples the detection contact to a bias voltage during a measurement mode and to a reference voltage during a detection mode, the reference voltage being different from the bias voltage. A method of contamination detection includes switching the electronics assembly between the measurement mode and the detection mode, and monitoring for a change in the output signal received by the electronics assembly.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Igor Gofman, Mu Wu
  • Patent number: 9936903
    Abstract: Embodiments herein provide detection of contamination at one or more contacts of a sensor system. The sensor system includes a sensor assembly and an electronics assembly communicatively coupled together by one or more contacts. The sensor assembly passes a sensor signal to the electronics assembly for further processing. The electronics assembly includes a detection contact for detecting contamination on or near one or more contacts of the sensor assembly and/or the electronics assembly. A switch selectively couples the detection contact to a bias voltage during a measurement mode and to a reference voltage during a detection mode, the reference voltage being different from the bias voltage. A method of contamination detection includes switching the electronics assembly between the measurement mode and the detection mode, and monitoring for a change in the output signal received by the electronics assembly.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: April 10, 2018
    Inventors: Igor Gofman, Mu Wu
  • Patent number: 9921208
    Abstract: A biosensor meter (10a) is provided for determining an analyte concentration in a fluid, such as glucose in blood. The biosensor meter includes a USB port (14a) having a first data signal port terminal (32d?), and a detection circuit (50a) including a first input terminal and an output terminal. The first input terminal of the detection circuit (50a) is coupled to the first data signal port terminal (32d?). The detection circuit (50a) provides at the output terminal a first output signal when a current sensed at the first input terminal is greater than or equal to a first predetermined amount, and a second output signal when the current sensed at the first input terminal is less than the first predetermined amount.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: March 20, 2018
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: Igor Gofman
  • Publication number: 20180018430
    Abstract: A portable data-management system may be easily employed with multiple processing devices by eliminating the need to pre-install additional programs, agents, device drivers, or other software components on the hosts. A portable storage device contains software for a data-management application, which receives and processes test data from a meter that measures an analyte. The portable device may employ an interface protocol that makes the portable device immediately compatible with different operating systems and hardware configurations. Once the portable device is connected to the host, the data-management application can be automatically launched. The convenience and portability of a data-management system may be enhanced by integrating advanced data processing and display features with the portable device. The users may access some advanced presentations of health data without having to launch the data-management application on a separate host.
    Type: Application
    Filed: May 31, 2017
    Publication date: January 18, 2018
    Inventors: Darren Brown, Jun Chen, Igor Gofman, Steven B. Harris, Paul L. Inman, Richard Kates, Qiong Li, Harris Lieber, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun, Mu Wu, Raymond Yao, Simin Yao
  • Publication number: 20170331309
    Abstract: A system and method is described for rapid charging and power management of a battery for a meter. A charger component is operably associated with the meter and is capable of executing a rapid charge algorithm for a rechargeable battery. The algorithm includes monitoring for a connection to an external power source and implementing a charging routine of a battery at a first charge rate and then at a second charge rate. The second charge rate is lower than the first charge rate. A temperature rise in the rechargeable battery due to the first charge rate has a negligible heat transfer effect on the fluid sample. The meter can also include a power switch for controlling current flow to a battery fuel gauge. The power switch is open when the meter enters into a sleep mode. The state of battery charge is determined after the meter exits the sleep mode.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 16, 2017
    Inventors: Igor Gofman, Jun Chen
  • Publication number: 20170161440
    Abstract: A portable data-management system may be easily employed with multiple processing devices by eliminating the need to pre-install additional programs, agents, device drivers, or other software components on the hosts. A portable storage device contains software for a data-management application, which receives and processes test data from a meter that measures an analyte. The portable device may employ an interface protocol that makes the portable device immediately compatible with different operating systems and hardware configurations. Once the portable device is connected to the host, the data-management application can be automatically launched. The convenience and portability of a data-management system may be enhanced by integrating advanced data processing and display features with the portable device. The users may access some advanced presentations of health data without having to launch the data-management application on a separate host.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 8, 2017
    Inventors: Darren Brown, Jun Chen, Igor Gofman, Steven B. Harris, Paul L. Inman, Richard Kates, Qiong Li, Harris Lieber, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun, Mu Wu, Raymond Yao, Simin Yao
  • Patent number: 9673612
    Abstract: Reverse battery protection circuits for devices powered by batteries coupled in parallel can include both P-channel and N-channel MOSFETs. Each positive battery terminal connector of a battery-powered device can be coupled to a gate of an N-channel MOSFET or to both a gate of an N-channel MOSFET and a gate of a P-channel MOSFET. In some embodiments, each negative battery terminal connector of the device can be connected to a gate of a P-channel MOSFET. In the event of a reverse battery connection, one or more of the protection circuit's P-channel and N-channel MOSFETS can switch to a non-conductive state to isolate the device's load from an incorrectly installed battery and prevent the incorrectly installed battery and/or other parallel-coupled battery from prematurely discharging. Methods of protecting a load from a reverse battery connection are also provided, as are other aspects.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: June 6, 2017
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventor: Igor Gofman
  • Patent number: 9667078
    Abstract: A system and method is described for rapid charging and power management of a battery for a meter. A charger component is operably associated with the meter and is capable of executing a rapid charge algorithm for a rechargeable battery. The algorithm includes monitoring for a connection to an external power source and implementing a charging routine of a battery at a first charge rate and then at a second charge rate. The second charge rate is lower than the first charge rate. A temperature rise in the rechargeable battery due to the first charge rate has a negligible heat transfer effect on the fluid sample. The meter can also include a power switch for controlling current flow to a battery fuel gauge. The power switch is open when the meter enters into a sleep mode. The state of battery charge is determined after the meter exits the sleep mode.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: May 30, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Igor Gofman, Jun Chen
  • Patent number: 9618967
    Abstract: A portable data-management system may be easily employed with multiple processing devices by eliminating the need to pre-install additional programs, agents, device drivers, or other software components on the hosts. A portable storage device contains software for a data-management application, which receives and processes test data from a meter that measures an analyte. The portable device may employ an interface protocol that makes the portable device immediately compatible with different operating systems and hardware configurations. Once the portable device is connected to the host, the data-management application can be automatically launched. The convenience and portability of a data-management system may be enhanced by integrating advanced data processing and display features with the portable device. The users may access some advanced presentations of health data without having to launch the data-management application on a separate host.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: April 11, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Darren Brown, Jun Chen, Igor Gofman, Steven B. Harris, Paul L. Inman, Richard Kates, Qiong Li, Harris Lieber, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun, Mu Wu, Raymond Yao, Simin Yao
  • Publication number: 20170074856
    Abstract: A test sensor (100) for determining an analyte concentration in a biological fluid comprises a strip including a fluid receiving area (128) and a port-insertion region (126). A first row of optically transparent (132) and non-transparent positions forms a calibration code pattern (130) disposed within a first area of the port-insertion region (126). A second row of optically transparent (142) and non-transparent positions forms a synchronization code pattern (140) disposed within a second area of the port-insertion region (126). The second area is different from the first area. The synchronization code pattern (140) corresponds to the calibration code pattern (130) such that the synchronization code pattern (140) provides synchronization of the serial calibration code pattern (130) during insertion of the port-insertion region (126) into the receiving port of the analyte meter.
    Type: Application
    Filed: March 5, 2015
    Publication date: March 16, 2017
    Inventor: Igor Gofman
  • Publication number: 20170010882
    Abstract: An architecture allows individual system components to be developed and tested individually, i.e., as distinct modules, and to be subsequently combined through standardized electrical and communication interfaces. Any combination of these modules can be implemented to form different products that provide any number of functions, such as an integrated system for monitoring a health condition and/or delivering a medication. The architecture also provides an approach for dynamically updating the product and offering its users the latest generation of technology even after the users have already purchased the product. In particular, the embodiments employ the communication interfaces to also provide connection to a remote network that can update or upgrade the product's software when the product is out in the field.
    Type: Application
    Filed: September 20, 2016
    Publication date: January 12, 2017
    Inventors: Steven Charlton, Jun Chen, Lin Chen, Qiang Fu, Igor Gofman, Steven B. Harris, Gary J. Johnson, Paul L. Inman, Qiong Li, Harris Lieber, Derek Lok, Tony Nguyen, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun
  • Patent number: 9535030
    Abstract: In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor has a base with first and second ends, a concave recess in the first end, a second end receiving surface, and a sidewall extending between the ends. An electrode may be provided on the receiving surface with an electrochemically-active region coupled to the electrode. A conductor in electrical contact with the electrode may extend along the sidewall and may be adapted to be in electrical contact with a first contact of an analyte meter. Manufacturing methods and systems utilizing and dispensing the analyte sensors are provided, as are numerous other aspects.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: January 3, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Igor Gofman, Robert S. Sams
  • Publication number: 20160337448
    Abstract: Embodiments of the present application enable setup synchronization of an end user medical device (110) such as a blood glucose meter. The invention includes a controller (302) including a memory (304); a transceiver (306) operatively coupled to the controller; and a host computer (104) interface (208) operative to couple the controller to a host computer, wherein the memory is operative to store instructions executable on the controller. The instructions are adapted to cause the controller to scan for an advertising medical device using the transceiver, establish a communications connection with a medical device advertising for synchronization, and transmit synchronization data to a medical device once a communication connection has been established. Numerous other aspects are disclosed.
    Type: Application
    Filed: December 10, 2014
    Publication date: November 17, 2016
    Applicant: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Igor Gofman, Christopher Dionisio
  • Patent number: 9471098
    Abstract: An architecture allows individual system components to be developed and tested individually, i.e., as distinct modules, and to be subsequently combined through standardized electrical and communication interfaces. Any combination of these modules can be implemented to form different products that provide any number of functions, such as an integrated system for monitoring a health condition and/or delivering a medication. The architecture also provides an approach for dynamically updating the product and offering its users the latest generation of technology even after the users have already purchased the product. In particular, the embodiments employ the communication interfaces to also provide connection to a remote network that can update or upgrade the product's software when the product is out in the field.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: October 18, 2016
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Steven Charlton, Jun Chen, Lin Chen, Qiang Fu, Igor Gofman, Steven B. Harris, Gary J. Johnson, Paul L. Inman, Qiong Li, Harris Lieber, Derek Lok, Tony Nguyen, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun
  • Publication number: 20160241015
    Abstract: Reverse battery protection circuits for devices powered by batteries coupled in parallel can include both P-channel and N-channel MOSFETs. Each positive battery terminal connector of a battery-powered device can be coupled to a gate of an N-channel MOSFET or to both a gate of an N-channel MOSFET and a gate of a P-channel MOSFET. In some embodiments, each negative battery terminal connector of the device can be connected to a gate of a P-channel MOSFET. In the event of a reverse battery connection, one or more of the protection circuit's P-channel and N-channel MOSFETS can switch to a non-conductive state to isolate the device's load from an incorrectly installed battery and prevent the incorrectly installed battery and/or other parallel-coupled battery from prematurely discharging. Methods of protecting a load from a reverse battery connection are also provided, as are other aspects.
    Type: Application
    Filed: March 11, 2016
    Publication date: August 18, 2016
    Inventor: Igor Gofman
  • Patent number: 9417105
    Abstract: Embodiments herein provide processing of sensor signals (e.g., signals representative of a level of an analyte in a body). An electronics assembly may include a sensor contact configured to receive a sensor signal from a sensor assembly, an integrator circuit configured to provide an integrator output signal representative of the sensor signal integrated from a first time to a second time, and a reset circuit configured to reset the integrator output signal in response to a reset signal. The electronics assembly may also include a processor circuit configured to determine a value of the integrator output signal and to provide the reset signal to the reset circuit when an integration interval has elapsed from the first time. The integration interval may be based at least in part on the integrator output signal.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 16, 2016
    Assignee: AgaMatrix, Inc.
    Inventors: Jun Chen, Igor Gofman, Mu Wu, Christopher Dionisio
  • Publication number: 20160202205
    Abstract: An analyte meter to detect an analyte concentration level in a bio-fluid sample may be cleaned and disinfected with a cleaning liquid without harming electrical and internal meter components. In some embodiments, the analyte meter is washable and immersable and may include a sealed sensor connector, sealed battery connector, and possibly a sealed USB connector that may be subjected to a cleaning liquid without the liquid entering an internal chamber of the analyte meter and contacting internal electronic components. In some embodiments, a sealed display screen and sealed keypad are provided such that liquids are prevented from entering the internal chamber. Manufacturing methods and systems utilizing the analyte sensors are provided, as are numerous other aspects.
    Type: Application
    Filed: August 11, 2014
    Publication date: July 14, 2016
    Inventors: Eugene PRAIS, David HUANG, James A. JOHNSON, Igor GOFMAN, Jun CHEN