Patents by Inventor Igor Kozin

Igor Kozin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11778889
    Abstract: Embodiments of the disclosed subject matter provide a device having a print head that includes a micronozzle array of depositors to deposit a material on a substrate. A reflective optical device may reflect a signal output by at least one optical sensor, and to reflect the signal from a surface of the substrate to the optical sensor. A processor may determine a distance between the optical sensor and the target surface of the substrate. The device may include one or more actuators coupled to the at least one print head to move the print head relative to an internal reference frame and adjust a position of the print head to the substrate. The sensor may be fixedly coupled with a mount to the internal reference frame. The print head may be configured to move independently of the optical sensor in at least one axis of linear or rotational motion.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: October 3, 2023
    Assignee: Universal Display Corporation
    Inventors: Matthew King, Gregg Kottas, Igor Kozin, Gregory McGraw, William E. Quinn
  • Publication number: 20220020972
    Abstract: Embodiments of the disclosed subject matter provide a device having a print head that includes a micronozzle array of depositors to deposit a material on a substrate. A reflective optical device may reflect a signal output by at least one optical sensor, and to reflect the signal from a surface of the substrate to the optical sensor. A processor may determine a distance between the optical sensor and the target surface of the substrate. The device may include one or more actuators coupled to the at least one print head to move the print head relative to an internal reference frame and adjust a position of the print head to the substrate. The sensor may be fixedly coupled with a mount to the internal reference frame. The print head may be configured to move independently of the optical sensor in at least one axis of linear or rotational motion.
    Type: Application
    Filed: June 29, 2021
    Publication date: January 20, 2022
    Inventors: Matthew KING, Gregg KOTTAS, Igor KOZIN, Gregory MCGRAW, William E. QUINN
  • Publication number: 20150075584
    Abstract: An automated method to monitor performance of a terrestrial solar cell array tracking the sun. The solar cell system includes drive means that adjust a position of the array along different respective axes with respect to the sun using the drive means. The techniques include predicting the position of the sun during a time period, and sampling an output parameter of the array indicative of performance. The sampled data may be used to identify a fault in the solar cell array, for example a misalignment or a failure of one or more solar cells, in which case a notification of that fault may be generated for the operator or a control signal may be output for correcting the fault. Alternatively, an output signal may be sent to an external system associated with the solar cell system. Various alignment testing routines for checking the solar tracking are described.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 19, 2015
    Inventors: James Sherman, Igor Kozin
  • Patent number: 8890044
    Abstract: An automated method to monitor performance of a terrestrial solar cell array tracking the sun. The solar cell system includes drive means that adjust a position of the array along different respective axes with respect to the sun using the drive means. The techniques include predicting the position of the sun during a time period, and sampling an output parameter of the array indicative of performance. The sampled data may be used to identify a fault in the solar cell array, for example a misalignment or a failure of one or more solar cells, in which case a notification of that fault may be generated for the operator or a control signal may be output for correcting the fault. Alternatively, an output signal may be sent to an external system associated with the solar cell system. Various alignment testing routines for checking the solar tracking are described.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 18, 2014
    Assignee: Suncore Photovoltaics, Incorporated
    Inventors: James Sherman, Igor Kozin
  • Patent number: 8592738
    Abstract: An alignment device for aligning solar cell modules of a solar tracking photovoltaic array relative to the sun. The alignment device may be mounted on at least one planar solar cell module so that an axis of the device is substantially perpendicular to the planar surface of the module. The device may include a convex lens at one end for focusing incoming rays of the sun into a focused beam, and a planar photodetector at a second end positioned so that the focused beam aligns on a predetermined point of the photodetector when the modules are correctly aligned. The instrument may also include a plurality of leads attached to the photodetector to provide a signal indicative of an angular misalignment of the at least one module.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: November 26, 2013
    Assignee: Suncore Photovoltaics, Inc.
    Inventors: Igor Kozin, James Sherman
  • Publication number: 20130306836
    Abstract: An automated method to monitor performance of a terrestrial solar cell array tracking the sun. The solar cell system includes drive means that adjust a position of the array along different respective axes with respect to the sun using the drive means. The techniques include predicting the position of the sun during a time period, and sampling an output parameter of the array indicative of performance. The sampled data may be used to identify a fault in the solar cell array, for example a misalignment or a failure of one or more solar cells, in which case a notification of that fault may be generated for the operator or a control signal may be output for correcting the fault. Alternatively, an output signal may be sent to an external system associated with the solar cell system. Various alignment testing routines for checking the solar tracking are described.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 21, 2013
    Applicant: Suncore Photovoltaics, Inc.
    Inventors: James Sherman, Igor Kozin
  • Patent number: 8507837
    Abstract: An automated method to monitor performance of a terrestrial solar cell array tracking the sun. The solar cell system includes drive means that adjust a position of the array along different respective axes with respect to the sun using the drive means. The techniques include predicting the position of the sun during a time period, and sampling an output parameter of the array indicative of performance. The sampled data may be used to identify a fault in the solar cell array, for example a misalignment or a failure of one or more solar cells, in which case a notification of that fault may be generated for the operator or a control signal may be output for correcting the fault. Alternatively, an output signal may be sent to an external system associated with the solar cell system. Various alignment testing routines for checking the solar tracking are described.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: August 13, 2013
    Assignee: Suncore Photovoltaics, Inc.
    Inventors: James Sherman, Igor Kozin
  • Patent number: 8193477
    Abstract: An automated method causes a terrestrial solar cell array to track the sun. The solar cell system may include motors that adjust a position of the array along different respective axes with respect to the sun. An alignment analysis procedure, e.g., a find sun routine, is performed to ensure that the solar cell system is properly aligned with the sun during solar tracking. This procedure may sweep the solar cell system along determined paths (e.g., azimuth and elevation paths) while measuring an output parameter indicative of system performance. The measured data is analyzed to determine if the solar cell system is in misalignment in which case the solar cell system is moved into proper alignment. The alignment procedure may be implemented on a periodic basis or using triggers, and may be automatically executed or manually executed.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 5, 2012
    Assignee: Emcore Solar Power, Inc.
    Inventors: James Sherman, Igor Kozin
  • Publication number: 20100294337
    Abstract: An automated method causes a terrestrial solar cell array to track the sun. The solar cell system may include motors that adjust a position of the array along different respective axes with respect to the sun. An alignment analysis procedure, e.g., a find sun routine, is performed to ensure that the solar cell system is properly aligned with the sun during solar tracking. This procedure may sweep the solar cell system along determined paths (e.g., azimuth and elevation paths) while measuring an output parameter indicative of system performance. The measured data is analyzed to determine if the solar cell system is in misalignment in which case the solar cell system is moved into proper alignment. The alignment procedure may be implemented on a periodic basis or using triggers, and maybe automatically executed or manually executed.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 25, 2010
    Applicant: EMCORE SOLAR POWER, INC.
    Inventors: James Sherman, Igor Kozin
  • Publication number: 20100108860
    Abstract: An automated method to monitor performance of a terrestrial solar cell array tracking the sun. The solar cell system includes drive means that adjust a position of the array along different respective axes with respect to the sun using the drive means. The techniques include predicting the position of the sun during a time period, and sampling an output parameter of the array indicative of performance. The sampled data may be used to identify a fault in the solar cell array, for example a misalignment or a failure of one or more solar cells, in which case a notification of that fault may be generated for the operator or a control signal may be output for correcting the fault. Alternatively, an output signal may be sent to an external system associated with the solar cell system. Various alignment testing routines for checking the solar tracking are described.
    Type: Application
    Filed: November 16, 2009
    Publication date: May 6, 2010
    Applicant: Emcore Solar Power, Inc.
    Inventors: James Sherman, Igor Kozin
  • Patent number: 6842548
    Abstract: The invention provides a method and apparatus for measuring one or more optical properties of a test medium, comprising providing an optical waveguide loop comprising a test medium, illuminating the optical waveguide loop with a plurality of light pulses, and detecting roundtrips of the light pulses at one or more locations along the loop, wherein the detected light pulses are indicative of one or more optical properties of the test medium. Preferably, ring-down time of said light pulses is determined. The invention provides measures of optical properties such as absorbance and refractive index of a test medium such as a gas, a liquid, and a solid material.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: January 11, 2005
    Assignee: Queen's University at Kingston
    Inventors: Hans-Peter Loock, R. Stephen Brown, Igor Kozin, Zhaoguo Tong, Richard D. Oleschuk
  • Publication number: 20030007715
    Abstract: The invention provides a method and apparatus for measuring one or more optical properties of a test medium, comprising providing an optical waveguide loop comprising a test medium, illuminating the optical waveguide loop with a plurality of light pulses, and detecting roundtrips of the light pulses at one or more locations along the loop, wherein the detected light pulses are indicative of one or more optical properties of the test medium. Preferably, ring-down time of said light pulses is determined. The invention provides measures of optical properties such as absorbance and refractive index of a test medium such as a gas, a liquid, and a solid material.
    Type: Application
    Filed: May 29, 2002
    Publication date: January 9, 2003
    Inventors: Hans-Peter Loock, R. Stephen Brown, Igor Kozin, Zhaoguo Tong, Richard D. Oleschuk