Patents by Inventor Igor Kubelik

Igor Kubelik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11307172
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: April 19, 2022
    Assignee: Smiths Detection Montreal, Inc.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Publication number: 20190128844
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 2, 2019
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Patent number: 10139366
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 27, 2018
    Assignee: SMITHS DETECTION MONTREAL INC.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Patent number: 9778224
    Abstract: An ionization device includes a first electrode comprising a conductive member coated with a dielectric layer. The ionization device also includes a spine extending adjacent to and at least partially along the first electrode. The ionization device further includes a second electrode comprising conductive segments disposed adjacent the first electrode. Each one of the conductive segments contacts the spine at a respective contact location. The dielectric layer of the first electrode separates the conductive member of the first electrode from the spine and the second electrode. The ionization device is configured to create plasma generating locations corresponding to respective crossings of the first electrode and the second electrode.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: October 3, 2017
    Assignee: Smiths Detection Montreal Inc.
    Inventors: Igor Kubelik, Simon Feldberg, Bohdan Atamanchuk, Mark Piniarski, Mark Lekhter, Daniel Levin, Vlad Sergeyev, Henryk Zaleski
  • Publication number: 20170023525
    Abstract: An ionization device includes a first electrode comprising a conductive member coated with a dielectric layer. The ionization device also includes a spine extending adjacent to and at least partially along the first electrode. The ionization device further includes a second electrode comprising conductive segments disposed adjacent the first electrode. Each one of the conductive segments contacts the spine at a respective contact location. The dielectric layer of the first electrode separates the conductive member of the first electrode from the spine and the second electrode. The ionization device is configured to create plasma generating locations corresponding to respective crossings of the first electrode and the second electrode.
    Type: Application
    Filed: November 26, 2014
    Publication date: January 26, 2017
    Inventors: Igor Kubelik, Simon Feldberg, Bohdan Atamanchuk, Mark Piniarski, Mark Lekhter, Daniel Levin, Vlad Sergeyev, Henryk Zaleski
  • Publication number: 20140264021
    Abstract: An ion detection assembly is described that includes a drift chamber, an inlet assembly, and a collector assembly. The drift chamber is formed of substantially non-conductive material and/or semi-conductive material. A patterned resistive trace is deposited on one or more of an interior surface or an exterior surface of the drift chamber. The patterned resistive trace is configured to connect to a source of electrical energy. The inlet assembly and the collector assembly are in fluid communication with the drift chamber. The inlet assembly includes an inlet for receiving a sample, a reaction region for ionizing the sample, and a gate for controlling entrance of the ionized sample to the drift chamber. The collector assembly includes a collector plate for collecting the ionized sample after the ionized sample passes through the drift chamber.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Applicant: Smiths Detection Montreal Inc.
    Inventors: Bohdan Atamanchuk, Volodimir Bondarenko, Vlad Sergeyev, Henryk Zaleski, Daniel Levin, Mark Piniarski, Igor Kubelik, Qunzhou Bian, Simon Feldberg, Douglas J. Green, Brian Boso, Atin J. Patel
  • Patent number: 6504557
    Abstract: A print head suitable for use in an image forming system is provided having a pair of electrode layers separated by an isolating structure that includes a semiconductor. The presence of the semiconductor, such as a semiconductor layer, extends the life of the print head by reducing degradation of the print head.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: January 7, 2003
    Assignee: Xerox Corporation
    Inventors: Alexander A. Kosyachkov, Igor Kubelik, Lech Jedral, Dung Nguen, Rossitza Ivanova
  • Patent number: 6501494
    Abstract: A printhead is disclosed having a dielectric layer composition with a relatively small capacitance while also being substantially plasma erosion resistant. In accordance with one example embodiment of the present invention, the printhead has at least a first electrode layer and at least a second electrode layer. A dielectric composition constructed of at least two dielectric layers of different dielectric materials insulates the first and second electrode layers with respect to each other.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: December 31, 2002
    Assignee: Xerox Corporation
    Inventor: Igor Kubelik
  • Publication number: 20020180858
    Abstract: A print head suitable for use in an image forming system is provided having a pair of electrode layers separated by an isolating structure that includes a semiconductor. The presence of the semiconductor, such as a semiconductor layer, extends the life of the print head by reducing degradation of the print head.
    Type: Application
    Filed: May 29, 2001
    Publication date: December 5, 2002
    Applicant: Xerox Corporation
    Inventors: Alexander A. Kosyachkov, Igor Kubelik, Lech Jedral, Dung Nguen, Rossitza Ivanova
  • Publication number: 20020167579
    Abstract: A printhead is disclosed having a dielectric layer composition with a relatively small capacitance while also being substantially plasma erosion resistant. In accordance with one example embodiment of the present invention, the printhead has at least a first electrode layer and at least a second electrode layer. A dielectric composition constructed of at least two dielectric layers of different dielectric materials insulates the first and second electrode layers with respect to each other.
    Type: Application
    Filed: May 9, 2001
    Publication date: November 14, 2002
    Applicant: Xerox Corporation
    Inventor: Igor Kubelik
  • Publication number: 20020167580
    Abstract: A method and apparatus relating to a unique printhead configuration is disclosed. The printhead configuration is based on a coplanar arrangement of two sets of electrodes. The electrodes are electrically separated from each other by a dielectric layer, and together create a matrix of charge generating sites. Such a printhead has a very low internal capacitance and therefore is suitable for high speed and high resolution printing.
    Type: Application
    Filed: May 10, 2001
    Publication date: November 14, 2002
    Applicant: Xerox Corporation
    Inventors: Peter Philebrown, Igor Kubelik
  • Patent number: 6476835
    Abstract: A method and apparatus relating to a unique printhead configuration is disclosed. The printhead configuration is based on a coplanar arrangement of two sets of electrodes. The electrodes are electrically separated from each other by a dielectric layer, and together create a matrix of charge generating sites. Such a printhead has a very low internal capacitance and therefore is suitable for high speed and high resolution printing.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: November 5, 2002
    Assignee: Xerox Corporation
    Inventors: Peter Philebrown, Igor Kubelik
  • Publication number: 20020145657
    Abstract: A printhead having a set of redundant rows of electrodes. The set of redundant rows is formed by providing additional rows of a first set of electrodes that repeats the charge-deposition pattern of another electrode in the set. The redundant electrodes are selectively activated to allow line to line variation of the charge deposition sequence when forming a latent image.
    Type: Application
    Filed: March 9, 2001
    Publication date: October 10, 2002
    Applicant: Xerox Corporation
    Inventor: Igor Kubelik
  • Patent number: 6462764
    Abstract: A printhead having a set of redundant rows of electrodes. The set of redundant rows is formed by providing additional rows of a first set of electrodes that repeats the charge-deposition pattern of another electrode in the set. The redundant electrodes are selectively activated to allow line to line variation of the charge deposition sequence when forming a latent image.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: October 8, 2002
    Assignee: Xerox Corporation
    Inventor: Igor Kubelik
  • Patent number: 6426768
    Abstract: A method and apparatus for a universal printhead is disclosed that functions independently of the diameter of a charge receiving dielectric drum, while optimizing print quality. The printhead includes two sets of electrodes mutually separated by a dielectric. Each of the electrodes from the first layer crosses each of the electrodes from the second layer forming a plurality of charge generating sites. The charge generating sites are generally disposed in only two rows.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: July 30, 2002
    Assignee: Xerox Corporation
    Inventor: Igor Kubelik
  • Publication number: 20020097313
    Abstract: A method and apparatus for a universal printhead is disclosed that functions independently of the diameter of a charge receiving dielectric drum, while optimizing print quality. The printhead includes two sets of electrodes mutually separated by a dielectric. Each of the electrodes from the first layer crosses each of the electrodes from the second layer forming a plurality of charge generating sites. The charge generating sites are generally disposed in only two rows.
    Type: Application
    Filed: January 25, 2001
    Publication date: July 25, 2002
    Applicant: Xerox Corporation
    Inventor: Igor Kubelik
  • Patent number: 6414702
    Abstract: A printhead having a plasma suppressing electrode configuration is disclosed. The printhead includes a first electrode layer. There is also a second electrode layer, electrically insulated from the first electrode layer by a dielectric material. In addition, there is a plurality of plasma suppressing electrodes arranged within the dielectric material to hinder plasma generation at predetermined locations.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: July 2, 2002
    Assignee: Xerox Corporation
    Inventor: Igor Kubelik
  • Patent number: 5886723
    Abstract: A print head has a matrix array of charge generating loci defined by crossings of a first set of electrodes which are parallel to each other and extend across the region to be printed and a second set of electrodes that extend obliquely across the first electrodes so that the crossings are closely spaced lattice points. The charge deposited by a lattice point varies with the position of the first electrode defining the point, but the electrodes are arranged so charge carriers are generated or gated for projection onto a latent imaging member with local charge dot uniformity. In one embodiment of the invention, there are an odd number of first electrodes, and the second electrodes are arranged such that when electrodes are actuated, pairs of adjacent dots are deposited by pairs of lattice points having complementary variations in charge. As viewed or measured along the print line, each pair of deposited dots has a substantially uniform level of charge, and doubling and extreme discontinuities do not occur.
    Type: Grant
    Filed: April 19, 1996
    Date of Patent: March 23, 1999
    Assignee: Delphax Systems
    Inventors: Igor Kubelik, Richard A. Fotland
  • Patent number: 5450103
    Abstract: An electrographic printing system moves a dielectric imaging member past a charge transfer print cartridge or bulk charging source, and a landing electrode arrangement directs charged particles with enhanced precision to dot positions on the imaging member. The arrangement includes a central, point-like, target electrode and a field electrode that, together with the target electrode, provides a corrective electric field component to form a focusing, or at least a non-diverging field over the target position. Field deflection artifacts such as "venetian blinding" are substantially corrected. The target electrodes are located behind the imaging member, in registry with the charging cartridge which is opposed to the other side of the member. Different landing electrode arrangements may include one- or two-dimensional arrays of targeting electrodes and are adapted to either bulk or pointwise arrays of charge emitter.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: September 12, 1995
    Assignee: Delphax Systems
    Inventor: Igor Kubelik
  • Patent number: 5315324
    Abstract: A print cartridge contains a matrix array of electrodes which are energized to deposit a latent charge image. To make the cartridge, electrodes are fabricated on a sheet which is then deformed about a rigid spine. Certain electrodes are formed of plural segments, and the segments are electrically interconnected only after the sheet is deformed. This prevents strains introduced during manufacture from building up over large distances and pulling active electrode structures out of alignment. A preferred cartridge has an area of active electrodes, which is planar and undeformed. Lead-in electrodes extend through deformed regions of the sheet, and are conductively fastened to the active electrodes only after the sheet has been deformed about a rigid spine and the electrodes have attained a stable and unstressed position. The spine maintains the active electrodes in a precise plane, and accommodates pressure from spring-loaded electrical contacts without deflecting.
    Type: Grant
    Filed: December 9, 1992
    Date of Patent: May 24, 1994
    Assignee: Delphax Systems
    Inventors: Igor Kubelik, Michael Simmonds