Patents by Inventor IGOR LEVAKOV

IGOR LEVAKOV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10477587
    Abstract: A method including receiving, by an antenna combiner of a wireless communication system, a set of Random Access Channel (RACH) sequences of a first RACH signal from a first antenna and a set of RACH sequences of a second RACH signal from a second antenna. The method further including selecting, by the antenna combiner, each RACH sequence of the set of RACH sequences of a selected RACH signal from a selected antenna that has a best Signal to Interference plus Noise Ratio (SINR) from each RACH sequence of the set of RACH sequences of the first RACH signal from the first antenna that has a first SINR and each RACH sequence of the set of RACH sequences of the second RACH signal from the second antenna that has a second SINR.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: November 12, 2019
    Assignee: NXP USA, Inc.
    Inventors: Matanya Handler, Igor Levakov
  • Publication number: 20170265228
    Abstract: A method including receiving, by an antenna combiner of a wireless communication system, a set of Random Access Channel (RACH) sequences of a first RACH signal from a first antenna and a set of RACH sequences of a second RACH signal from a second antenna. The method further including selecting, by the antenna combiner, each RACH sequence of the set of RACH sequences of a selected RACH signal from a selected antenna that has a best Signal to Interference plus Noise Ratio (SINR) from each RACH sequence of the set of RACH sequences of the first RACH signal from the first antenna that has a first SINR and each RACH sequence of the set of RACH sequences of the second RACH signal from the second antenna that has a second SINR.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 14, 2017
    Inventors: Matanya Handler, Igor Levakov
  • Patent number: 9749161
    Abstract: A predistortion method and apparatus are provided which use a DPD actuator (225) to apply a memory polynomial formed with first DPD coefficients to a first input signal x[n], thereby generating a first pre-distorted input signal y[n] which is provided to the non-linear electronic device (253) to produce the output signal, where the memory polynomial may be adaptively modified with a digital predistortion adapter (224) which computes second DPD coefficients u[n] with an iterative fixed-point conjugate gradient method which uses N received digital samples of the first pre-distorted input signal y[n] and a feedback signal z[n] captured from the output signal to process a set of conjugate gradient parameters (u, b, v, r, ?, ?, ?) at each predetermined interval, thereby updating the first DPD coefficients with the second DPD coefficients u[n] generate a second pre-distorted input signal which is provided to the non-linear electronic device.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: August 29, 2017
    Assignee: NXP USA, Inc.
    Inventors: Avraham D. Gal, Roi M. Shor, Igor Levakov
  • Publication number: 20170244582
    Abstract: A predistortion method and apparatus are provided which use a DPD actuator (225) to apply a memory polynomial formed with first DPD coefficients to a first input signal x[n], thereby generating a first pre-distorted input signal y[n] which is provided to the non-linear electronic device (253) to produce the output signal, where the memory polynomial may be adaptively modified with a digital predistortion adapter (224) which computes second DPD coefficients u[n] with an iterative fixed-point conjugate gradient method which uses N received digital samples of the first pre-distorted input signal y[n] and a feedback signal z[n] captured from the output signal to process a set of conjugate gradient parameters (u, b, v, r, ?, ?, ?) at each predetermined interval, thereby updating the first DPD coefficients with the second DPD coefficients u[n] generate a second pre-distorted input signal which is provided to the non-linear electronic device.
    Type: Application
    Filed: February 23, 2016
    Publication date: August 24, 2017
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Avraham D. Gal, Roi M. Shor, Igor Levakov
  • Patent number: 9667455
    Abstract: An equalizer circuit of a particular equalization stage of a equalizer circuit is omitted, and input signals that would have otherwise been received at the omitted equalization circuit bypass the equalization stage and are instead processed at an equalizer circuit included at the next stage. Thus, a subset of the received frequency-domain signals can be processed by equalizer circuits at a first stage, while the remaining received frequency-domain signals bypass the first stage and are processed at an equalizer circuit included at a second stage.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventors: Igor Levakov, Haim Bareket, Roi M. Shor
  • Patent number: 9590757
    Abstract: An equalizer for equalizing a composite signal originating from a given number of simultaneous data streams able to be received over a communication channel, on a given number of antennas, at one or more radio units, in a wireless communication system. The equalizer performs matrix operations when the number of receiving antennas associated with the composite signal is lower than the number of antennas supported by the equalizer. The channel matrix and the signal and interference covariance matrices are manipulated. The antenna dimension is increased, padding is then added and the transmitted signal vector is finally determined based on the altered matrices. A baseband processing unit, a method and a computer program are also claimed.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: March 7, 2017
    Assignee: NXP USA, INC.
    Inventors: Igor Levakov, Haim Ben-Lulu, Vincent Pierre Martinez
  • Publication number: 20160087741
    Abstract: An equalizer for equalizing a composite signal originating from a given number of simultaneous data streams able to be received over a communication channel, on a given number of antennas, at one or more radio units, in a wireless communication system. The equalizer performs matrix operations when the number of receiving antennas associated with the composite signal is lower than the number of antennas supported by the equalizer. The channel matrix and the signal and interference covariance matrices are manipulated. The antenna dimension is increased, padding is then added and the transmitted signal vector is finally determined based on the altered matrices. A baseband processing unit, a method and a computer program are also claimed.
    Type: Application
    Filed: February 23, 2015
    Publication date: March 24, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: IGOR LEVAKOV, HAIM BEN-LULU, VINCENT PIERRE MARTINEZ