Patents by Inventor Igor M. Savukov

Igor M. Savukov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7994783
    Abstract: An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 9, 2011
    Assignee: The Regents of the Univerisity of California
    Inventors: Micah P. Ledbetter, Igor M. Savukov, Dmitry Budker, Vishal K. Shah, Svenja Knappe, John Kitching, David J. Michalak, Shoujun Xu, Alexander Pines
  • Publication number: 20090256561
    Abstract: An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.
    Type: Application
    Filed: February 6, 2009
    Publication date: October 15, 2009
    Applicant: The Regents of the University of California
    Inventors: Micah P. Ledbetter, Igor M. Savukov, Dmitry Budker, Vishal K. Shah, Svenja Knappe, John Kitching, David J. Michalak, Shoujun Xu, Alexander Pines
  • Patent number: 7521928
    Abstract: A radio-frequency tunable atomic magnetometer for detection of nuclear quadrupole resonance (NQR) from room temperature solids, including detection of nitrogen-containing explosives placed external to a sensor unit. A potassium radio-frequency magnetometer with sensitivity of 0.24 fT/Hz1/2 operating at 423 kHz is provided. The magnetometer detected a 14N NQR signal from room temperature ammonium nitrate (NH4NO3) in the zero-applied field limit. Results demonstrate first time detection of NQR with an atomic magnetometer, providing that a cryogen-free atomic magnetometer, with intrinsically frequency-independent sensitivity and easy tuning capabilities, can be an attractive new tool for detecting magnetic resonance signals in the kHz to MHz range.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: April 21, 2009
    Assignee: Trustees of Princeton University
    Inventors: Michael V. Romalis, Karen L. Sauer, Igor M. Savukov, Scott J. Seltzer, Seung-Kyun Lee
  • Publication number: 20080106261
    Abstract: A radio-frequency tunable atomic magnetometer for detection of nuclear quadrupole resonance (NQR) from room temperature solids, including detection of nitrogen-containing explosives placed external to a sensor unit. A potassium radio-frequency magnetometer with sensitivity of 0.24 fT/Hz1/2 operating at 423 kHz is provided. The magnetometer detected a 14N NQR signal from room temperature ammonium nitrate (NH4NO3) in the zero-applied field limit. Results demonstrate first time detection of NQR with an atomic magnetometer, providing that a cryogen-free atomic magnetometer, with intrinsically frequency-independent sensitivity and easy tuning capabilities, can be an attractive new tool for detecting magnetic resonance signals in the kHz to MHz range.
    Type: Application
    Filed: November 7, 2006
    Publication date: May 8, 2008
    Applicant: Trustees of Princeton University
    Inventors: Michael V. Romalis, Karen L. Sauer, Igor M. Savukov, Scott J. Seltzer, Seung-Kyun Lee