Patents by Inventor Igor Matheus Petronella Aarts

Igor Matheus Petronella Aarts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971665
    Abstract: An alignment method includes directing an illumination beam with a first polarization state to form a diffracted beam with a second polarization state from an alignment target, and passing the diffracted beam through a polarization analyzer. The alignment method further includes measuring a polarization state of the diffracted beam and determining a location of the alignment target from the measured polarization state relative to its initial polarization state. The alignment target includes a plurality of diffraction gratings with a single pitch and two or more duty cycles, wherein the pitch is smaller than a wavelength of the illumination beam, and the location of the alignment target corresponds to the duty cycle of the diffraction grating.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: April 30, 2024
    Assignee: ASML Holding N.V.
    Inventors: Joshua Adams, Yuxiang Lin, Krishanu Shome, Gerrit Johannes Nijmeijer, Igor Matheus Petronella Aarts
  • Patent number: 11899380
    Abstract: An apparatus for and method of sensing alignment marks in which a self-referencing interferometer based sensor outputs standing images of the alignment marks and camera device is used to capture the images as output by the sensor and a detector is used to obtain phase information about the alignment marks from the images as output by the sensor.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: February 13, 2024
    Assignee: ASML Holding N.V.
    Inventors: Krishanu Shome, Igor Matheus Petronella Aarts, Junwon Lee
  • Patent number: 11835752
    Abstract: A measurement apparatus, including: a tapered optical fiber, the tapered optical fiber having an input to receive radiation and having an output to provide spectrally broadened output radiation toward a measurement target, the tapered optical fiber configured to spectrally broaden the radiation received at the input; and a detector system configured to receive a redirected portion of the output radiation from the measurement target.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: December 5, 2023
    Assignee: ASML HOLDING N.V.
    Inventors: King Pui Leung, Tao Chen, Ronan James Havelin, Igor Matheus Petronella AARTS, Adel Joobeur, Joseph Carbone
  • Publication number: 20230176494
    Abstract: A method for generating an alignment signal that includes detecting local dimensional distortions of an alignment mark and generating the alignment signal based on the alignment mark. The alignment signal is weighted based on the local dimensional distortions of the alignment mark. Detecting the local dimensional distortions can include irradiating the alignment mark with radiation, the alignment mark including a geometric feature, and detecting one or more phase and/or amplitude shifts in reflected radiation from the geometric feature. The one or more phase and/or amplitude shifts correspond to the local dimensional distortions of the geometric feature. A parameter of the radiation, an alignment inspection location within the geometric feature, an alignment inspection location on a layer of a structure, and/or a radiation beam trajectory across the geometric feature may be determined based on the one or more detected phase and/or amplitude shifts.
    Type: Application
    Filed: April 22, 2021
    Publication date: June 8, 2023
    Applicants: ASML HOLDING N.V., ASML NETHERLANDS B.V.
    Inventors: Zahrasadat DASTOURI, Igor Matheus Petronella AARTS, Simon Gijsbert Josephus MATHIJISSEN, Peter David ENGBLOM
  • Patent number: 11513446
    Abstract: A method of applying a measurement correction includes determining an orthogonal subspace used to characterize a first principal component of the measurement and a second principal component of the measurement, and rotating the orthogonal subspace by a first angle such that the first principle component rotates to become a first factor vector and the second principle component rotates to become a second factor vector. An asymmetry vector is generated by rotating the second factor vector by a second angle, where the asymmetry vector and the first factor vector define a non-orthogonal subspace. An asymmetry contribution is determined in the measurement based on the projection of the measurement onto the first factor vector in the non-orthogonal subspace. The method also includes subtracting the asymmetry contribution from the measurement.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: November 29, 2022
    Assignee: ASML Holding N.V.
    Inventors: Greger Göte Andersson, Krishanu Shome, Zahrasadat Dastouri, Igor Matheus Petronella Aarts
  • Patent number: 11493852
    Abstract: A method of applying a measurement correction includes determining an orthogonal subspace used to characterize the measurement as a plot of data. A first axis of the orthogonal subspace corresponds to constructive interference output from an interferometer of the metrology system plus a first error variable and a second axis of the orthogonal subspace corresponds to destructive interference output from the interferometer of the metrology system plus a second error variable. The method also includes determining a slope of the plot of data and determining a fitted line to the plot of data in the orthogonal subspace based on the slope.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: November 8, 2022
    Assignee: ASML Holdings N.V.
    Inventors: Zahrasadat Dastouri, Greger Göte Andersson, Krishanu Shome, Igor Matheus Petronella Aarts
  • Publication number: 20220137523
    Abstract: An alignment method includes directing an illumination beam with a first polarization state to form a diffracted beam with a second polarization state from an alignment target, and passing the diffracted beam through a polarization analyzer. The alignment method further includes measuring a polarization state of the diffracted beam and determining a location of the alignment target from the measured polarization state relative to its initial polarization state. The alignment target includes a plurality of diffraction gratings with a single pitch and two or more duty cycles, wherein the pitch is smaller than a wavelength of the illumination beam, and the location of the alignment target corresponds to the duty cycle of the diffraction grating.
    Type: Application
    Filed: February 6, 2020
    Publication date: May 5, 2022
    Applicant: ASML Holding N.V.
    Inventors: Joshua ADAMS, Yuxiang LIN, Krishanu SHOME, Gerrit Johannes NIJMEIJER, Igor Matheus Petronella AARTS
  • Publication number: 20220066334
    Abstract: A method of applying a measurement correction includes determining an orthogonal subspace used to characterize the measurement as a plot of data. A first axis of the orthogonal subspace corresponds to constructive interference output from an interferometer of the metrology system plus a first error variable and a second axis of the orthogonal subspace corresponds to destructive interference output from the interferometer of the metrology system plus a second error variable. The method also includes determining a slope of the plot of data and determining a fitted line to the plot of data in the orthogonal subspace based on the slope.
    Type: Application
    Filed: December 12, 2019
    Publication date: March 3, 2022
    Inventors: Zahrasadat DASTOURI, Greger Göte ANDERSSON, Krishanu SHOME, Igor Matheus Petronella AARTS
  • Publication number: 20210397103
    Abstract: A method of applying a measurement correction includes determining an orthogonal subspace used to characterize a first principal component of the measurement and a second principal component of the measurement, and rotating the orthogonal subspace by a first angle such that the first principle component rotates to become a first factor vector and the second principle component rotates to become a second factor vector. An asymmetry vector is generated by rotating the second factor vector by a second angle, where the asymmetry vector and the first factor vector define a non-orthogonal subspace. An asymmetry contribution is determined in the measurement based on the projection of the measurement onto the first factor vector in the non-orthogonal subspace. The method also includes subtracting the asymmetry contribution from the measurement.
    Type: Application
    Filed: November 26, 2019
    Publication date: December 23, 2021
    Inventors: Greger Göte Andersson, Krishanu Shome, Zahrasadat Dastouri, Igor Matheus Petronella Aarts
  • Patent number: 11175593
    Abstract: An alignment sensor apparatus includes an illumination system, a first optical system, a second optical system, a detector system, and a processor. The illumination system is configured to transmit an illumination beam along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target on a substrate. The second optical system includes a first polarizing optic configured to separate and transmit an irradiance distribution. The detector system is configured to measure a center of gravity of the diffraction target based on the irradiance distribution outputted from a first polarization branch and a second polarization branch. The processor is configured to measure a shift in the center of gravity of the diffraction target caused by an asymmetry variation in the diffraction target and determine a sensor response function of the alignment sensor apparatus based on the center of gravity shift.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: November 16, 2021
    Assignees: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Simon Reinald Huisman, Tamer Mohamed Tawfik Ahmed Mohamed Elazhary, Yuxiang Lin, Vu Quang Tran, Sebastianus Adrianus Goorden, Justin Lloyd Kreuzer, Christopher John Mason, Igor Matheus Petronella Aarts, Krishanu Shome, Irit Tzemah
  • Patent number: 11156928
    Abstract: An alignment mark for determining a two-dimensional alignment position of a substrate is discussed. The alignment mark includes an array of patterns. The array of patterns includes a first set of patterns and a second set of patterns arranged. The first set of patterns is arranged in a first sequence along a first direction. The second set of patterns is arranged in a second sequence along the first direction. The second sequence is different from the first sequence. Each pattern of the array of patterns is different from other patterns of the array of patterns that are adjacent to the each pattern.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: October 26, 2021
    Assignee: ASML Holding N.V.
    Inventors: Gerrit Johannes Nijmeijer, Junqiang Zhou, Piotr Jan Meyer, Jeffrey John Lombardo, Igor Matheus Petronella Aarts
  • Publication number: 20210132509
    Abstract: An alignment sensor apparatus includes an illumination system, a first optical system, a second optical system, a detector system, and a processor. The illumination system is configured to transmit an illumination beam along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target on a substrate. The second optical system includes a first polarizing optic configured to separate and transmit an irradiance distribution. The detector system is configured to measure a center of gravity of the diffraction target based on the irradiance distribution outputted from a first polarization branch and a second polarization branch. The processor is configured to measure a shift in the center of gravity of the diffraction target caused by an asymmetry variation in the diffraction target and determine a sensor response function of the alignment sensor apparatus based on the center of gravity shift.
    Type: Application
    Filed: April 3, 2019
    Publication date: May 6, 2021
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Simon Reinald HUISMAN, Tamer Mohamed Tawfik Ahmed Mohamed ELAZHARY, Yuxiang LIN, Vu Quang TRAN, Sebastianus Adrianus GOORDEN, Justin Lloyd KREUZER, Christopher John MASON, Igor Matheus Petronella AARTS, Krishanu SHOME, Irit TZEMAH
  • Patent number: 10928738
    Abstract: A method of applying a measurement correction includes calculating a first correction value based on a first coefficient and the measurement; calculating a second correction value based on a second coefficient, greater than the first coefficient, and the measurement; and calculating a third correction value based on a third coefficient, greater than the second coefficient, and the measurement. The method also includes applying the third correction value to the measurement if a difference between the first correction value and the third correction value is above a first threshold value; applying the second correction value to the measurement if a difference between the first correction value and the second correction value is above a second threshold value; and applying the first correction value to the measurement if the difference between the first correction value and the second correction value is below or equal to the second threshold value.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: February 23, 2021
    Assignee: ASML Holding N.V.
    Inventors: Eric Brian Catey, Igor Matheus Petronella Aarts, Robert Anthony Augelli, Sergey Malyk
  • Publication number: 20210033779
    Abstract: A measurement apparatus, including: a tapered optical fiber, the tapered optical fiber having an input to receive radiation and having an output to provide spectrally broadened output radiation toward a measurement target, the tapered optical fiber configured to spectrally broaden the radiation received at the input; and a detector system configured to receive a redirected portion of the output radiation from the measurement target.
    Type: Application
    Filed: October 9, 2020
    Publication date: February 4, 2021
    Applicant: ASML HOLDING N.V.
    Inventors: King Pui LEUNG, Tao CHEN, Ronan James HAVELIN, Igor Matheus Petronella AARTS, Adel JOOBEUR, Joseph CARBONE
  • Patent number: 10802208
    Abstract: A measurement apparatus, including: a tapered optical fiber, the tapered optical fiber having an input to receive radiation and having an output to provide spectrally broadened output radiation toward a measurement target, the tapered optical fiber configured to spectrally broaden the radiation received at the input; and a detector system configured to receive a redirected portion of the output radiation from the measurement target.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: October 13, 2020
    Assignee: ASML Holding N.V.
    Inventors: King Pui Leung, Tao Chen, Ronan James Havelin, Igor Matheus Petronella Aarts, Adel Joobeur, Joseph Carbone
  • Publication number: 20200124995
    Abstract: An alignment mark for determining a two-dimensional alignment position of a substrate is discussed. The alignment mark includes an array of patterns. The array of patterns includes a first set of patterns and a second set of patterns arranged. The first set of patterns is arranged in a first sequence along a first direction. The second set of patterns is arranged in a second sequence along the first direction. The second sequence is different from the first sequence. Each pattern of the array of patterns is different from other patterns of the array of patterns that are adjacent to the each pattern.
    Type: Application
    Filed: May 2, 2018
    Publication date: April 23, 2020
    Applicant: ASML Holding N.V.
    Inventors: Gerrit Johannes NIJMEIJER, Junqiang ZHOU, Piotr Jan MEYER, Jeffrey John LOMBARDO, Igor Matheus Petronella AARTS
  • Patent number: 10488767
    Abstract: An alignment system obtains the characteristics of the light coming back from a wafer stack. A beam analyzer measures changes in wavelength, polarization, and beam profile. This measured information allows for in-line process variation corrections. The correction provides optical monitoring of individual mark stack variations, and in turn provides information to reduce individual mark process variation-induced accuracy error.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 26, 2019
    Assignee: ASML Holding N.V.
    Inventors: Krishanu Shome, Igor Matheus Petronella Aarts, Justin Lloyd Kreuzer, Irit Tzemah
  • Patent number: 10481507
    Abstract: A method, including printing an apparatus mark onto a structure while the structure is at least partly within a lithographic apparatus. The structure may be part of, or is located on, a substrate table, but is separate from a substrate to be held by the apparatus. The method further includes measuring the apparatus mark using a sensor system within the apparatus.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 19, 2019
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Kevin J. Violette, Igor Matheus Petronella Aarts, Haico Victor Kok, Eric Brian Catey
  • Publication number: 20190204759
    Abstract: An alignment system obtains the characteristics of the light coming back from a wafer stack. A beam analyzer measures changes in wavelength, polarization, and beam profile. This measured information allows for in-line process variation corrections. The correction provides optical monitoring of individual mark stack variations, and in turn provides information to reduce individual mark process variation-induced accuracy error.
    Type: Application
    Filed: May 17, 2017
    Publication date: July 4, 2019
    Applicant: ASML Holding N.V.
    Inventors: Krishanu SHOME, Igor Matheus Petronella AARTS, Justin Lloyd KREUZER, Irit TZEMAH
  • Publication number: 20190196341
    Abstract: A method, including printing an apparatus mark onto a structure while the structure is at least partly within a lithographic apparatus. The structure may be part of, or is located on, a substrate table, but is separate from a substrate to be held by the apparatus. The method further includes measuring the apparatus mark using a sensor system within the apparatus.
    Type: Application
    Filed: August 18, 2017
    Publication date: June 27, 2019
    Applicants: ASML HOLDING N.V., ASML NETHERLANDS B.V.
    Inventors: Kevin J VIOLETTE, Igor Matheus Petronella AARTS, Haico Victor KOK, Eric Brian CATEY