Patents by Inventor Igor P. Prikhodko

Igor P. Prikhodko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240353844
    Abstract: Navigation systems and methods for autonomous vehicles are provided. The navigation system may include multiple navigation subsystems, including one having an inertial measurement unit (IMU). That unit may serve as the primary unit for navigation purposes, with other navigation subsystems being treated as secondary. The other navigation subsystems may include global positioning system (GPS) sensors, and perception sensors. In some embodiments, the navigation system may include a first filter for the IMU sensor and separate filters for the other navigation subsystems.
    Type: Application
    Filed: June 28, 2024
    Publication date: October 24, 2024
    Applicant: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Joseph Bergeron, Alan Christopher O'Connor
  • Patent number: 12038759
    Abstract: Navigation systems and methods for autonomous vehicles are provided. The navigation system may include multiple navigation subsystems, including one having an inertial measurement unit (IMU). That unit may serve as the primary unit for navigation purposes, with other navigation subsystems being treated as secondary. The other navigation subsystems may include global positioning system (GPS) sensors, and perception sensors. In some embodiments, the navigation system may include a first filter for the IMU sensor and separate filters for the other navigation subsystems.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: July 16, 2024
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Joseph Bergeron, Alan Christopher O'Connor
  • Patent number: 11965740
    Abstract: According to some aspects, there is provided a microelectromechanical systems (MEMS) device wherein one or more components of the MEMS device exhibit attenuated motion relative to one or more other moving components. The MEMS device may comprise a substrate; a proof mass coupled to the substrate and configured to move along a resonator axis; and a first shuttle coupled to the proof mass and comprising one of a drive structure configured to drive the proof mass along the resonator axis or a sense structure configured to move along a second axis substantially perpendicular to the resonator axis in response to motion of the proof mass along the resonator axis, wherein displacement of at least a first portion of the proof mass is attenuated relative to displacement of the first shuttle and/or a second portion of the proof mass.
    Type: Grant
    Filed: May 19, 2023
    Date of Patent: April 23, 2024
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, John A. Geen
  • Publication number: 20240003684
    Abstract: A gyroscope includes a substrate, a proof mass coupled to the substrate and configured to move in direction of an X axis and in direction of a Y axis orthogonal to the first axis, an X axis shuttle to selectively drive the proof mass along the X axis as a drive axis or sense movement of the proof mass along the X axis as a sense axis in response to the proof mass driven along the Y axis as the drive axis, and a Y axis shuttle to selectively sense movement of the proof mass along the Y axis as a sense axis in response to the proof mass driven along the X axis or drive the proof mass along the Y axis as the drive axis. The X axis shuttle is symmetric to the Y axis shuttle along a diagonal axis that is diagonal to both the X axis and the Y axis. The X and Y axis shuttles have gaps designed for a predetermined DC voltage to generate spring softening (negative cubic nonlinearity) that is equal to spring hardening (positive cubic nonlinearity), ensuring linear motion at high amplitudes (? of the capacitive gap).
    Type: Application
    Filed: April 13, 2023
    Publication date: January 4, 2024
    Inventors: Igor P. Prikhodko, Gaurav Vohra, Arthur Yurievich Savchenko, Xin Zhang
  • Publication number: 20230332890
    Abstract: Microelectromechanical systems (MEMS) yaw gyroscopes having out-of-plane quadrature trim electrodes are described. The gyroscope includes a proof mass configured to be driven in-plane. The proof mass includes an opening, or a plurality of openings. The out-of-plane quadrature trim electrodes are positioned to laterally overlap edges of the opening in a projection plane. The out-of-plane quadrature trim electrodes trim in-plane motion of the proof mass in one or two directions to limit quadrature motion. The out-of-plane quadrature trim electrodes may be arranged in a symmetric pattern to enable mode switching.
    Type: Application
    Filed: April 14, 2023
    Publication date: October 19, 2023
    Applicant: Analog Devices, Inc.
    Inventors: Arthur Y. Savchenko, Igor P. Prikhodko, Tyler Adam Dunn
  • Patent number: 11774244
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: October 3, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Publication number: 20230296379
    Abstract: According to some aspects, there is provided a microelectromechanical systems (MEMS) device wherein one or more components of the MEMS device exhibit attenuated motion relative to one or more other moving components. The MEMS device may comprise a substrate; a proof mass coupled to the substrate and configured to move along a resonator axis; and a first shuttle coupled to the proof mass and comprising one of a drive structure configured to drive the proof mass along the resonator axis or a sense structure configured to move along a second axis substantially perpendicular to the resonator axis in response to motion of the proof mass along the resonator axis, wherein displacement of at least a first portion of the proof mass is attenuated relative to displacement of the first shuttle and/or a second portion of the proof mass.
    Type: Application
    Filed: May 19, 2023
    Publication date: September 21, 2023
    Applicant: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, John A. Geen
  • Patent number: 11698257
    Abstract: According to some aspects, there is provided a microelectromechanical systems (MEMS) device wherein one or more components of the MEMS device exhibit attenuated motion relative to one or more other moving components. The MEMS device may comprise a substrate; a proof mass coupled to the substrate and configured to move along a resonator axis; and a first shuttle coupled to the proof mass and comprising one of a drive structure configured to drive the proof mass along the resonator axis or a sense structure configured to move along a second axis substantially perpendicular to the resonator axis in response to motion of the proof mass along the resonator axis, wherein displacement of at least a first portion of the proof mass is attenuated relative to displacement of the first shuttle and/or a second portion of the proof mass.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: July 11, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, John A. Geen
  • Patent number: 11686581
    Abstract: A MEMS device is provided comprising a substrate; a proof mass coupled to the substrate and configured to move along a resonator axis; a drive structure comprising at least one electrode and configured to drive the proof mass to move along the resonator axis; and a pivoting linkage coupled to the proof mass at first and second ends of the pivoting linkage, the first end comprising a first fixed pivot and the second end comprising a second fixed pivot, the pivoting linkage comprising: a first bar configured to pivot about the first fixed pivot and a first dynamic pivot; a second bar configured to pivot about the second fixed pivot and a second dynamic pivot; and a third bar configured to pivot about the first dynamic pivot and the second dynamic pivot, wherein the proof mass moves along the resonator axis when the pivoting linkage pivots.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: June 27, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Gaurav Vohra
  • Patent number: 11656077
    Abstract: An extensional mode electrostatic microelectromechanical systems (MEMS) gyroscope is described. The MEMS gyroscope operates in an extensional mode. The MEMS gyroscope comprises a vibrating ring structure that is electrostatically excited in the extensional mode.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 23, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Michael Judy
  • Publication number: 20220057210
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 24, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Publication number: 20220057208
    Abstract: According to some aspects, there is provided a microelectromechanical systems (MEMS) device wherein one or more components of the MEMS device exhibit attenuated motion relative to one or more other moving components. The MEMS device may comprise a substrate; a proof mass coupled to the substrate and configured to move along a resonator axis; and a first shuttle coupled to the proof mass and comprising one of a drive structure configured to drive the proof mass along the resonator axis or a sense structure configured to move along a second axis substantially perpendicular to the resonator axis in response to motion of the proof mass along the resonator axis, wherein displacement of at least a first portion of the proof mass is attenuated relative to displacement of the first shuttle and/or a second portion of the proof mass.
    Type: Application
    Filed: August 24, 2021
    Publication date: February 24, 2022
    Applicant: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, John A. Geen
  • Publication number: 20210381832
    Abstract: A MEMS device is provided comprising a substrate; a proof mass coupled to the substrate and configured to move along a resonator axis; a drive structure comprising at least one electrode and configured to drive the proof mass to move along the resonator axis; and a pivoting linkage coupled to the proof mass at first and second ends of the pivoting linkage, the first end comprising a first fixed pivot and the second end comprising a second fixed pivot, the pivoting linkage comprising: a first bar configured to pivot about the first fixed pivot and a first dynamic pivot; a second bar configured to pivot about the second fixed pivot and a second dynamic pivot; and a third bar configured to pivot about the first dynamic pivot and the second dynamic pivot, wherein the proof mass moves along the resonator axis when the pivoting linkage pivots.
    Type: Application
    Filed: June 7, 2021
    Publication date: December 9, 2021
    Applicant: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Gaurav Vohra
  • Publication number: 20210381834
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 9, 2021
    Applicant: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Patent number: 11193771
    Abstract: Columnar multi-axis microelectromechanical systems (MEMS) devices (such as gyroscopes) balanced against undesired linear and angular vibration are described herein. In some embodiments, the columnar MEMS device may comprise at least two multiple-mass columns, each having at least three proof masses and being configured to sense rotation about a respective axis. The motion and mass of the proof masses may be controlled to achieve linear and rotational balancing of the MEMS device. The columnar MEMS device may further comprise one or more modular drive structures disposed alongside each multiple-mass column to facilitate displacement of the proof masses of a respective column. The MEMS devices described herein may be used to sense roll, yaw, and pitch angular rates.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: December 7, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Charles Blackmer, Tyler Adam Dunn, Eugene Oh Hwang, Jinbo Kuang, Kemiao Jia, Laura Cornelia Popa, Igor P. Prikhodko, Erdinc Tatar
  • Publication number: 20210278847
    Abstract: Navigation systems and methods for autonomous vehicles are provided. The navigation system may include multiple navigation subsystems, including one having an inertial measurement unit (IMU). That unit may serve as the primary unit for navigation purposes, with other navigation subsystems being treated as secondary. The other navigation subsystems may include global positioning system (GPS) sensors, and perception sensors. In some embodiments, the navigation system may include a first filter for the IMU sensor and separate filters for the other navigation subsystems.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 9, 2021
    Applicant: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Joseph Bergeron, Alan Christopher O'Connor
  • Patent number: 10746548
    Abstract: Novel structural features applicable to a variety of inertial sensors. A composite ring composed of concentric subrings is supported by a compliant support structure suspending the composite ring relative to a substrate. The compliant support structure may either be interior or exterior to the composite ring. The compliant support may be composed of multiple substantially concentric rings coupled to neighboring rings by transverse members regularly spaced at intervals that vary with radius relative to a central axis of symmetry. Subrings making up the composite ring may vary in width so as to provide larger displacement amplitudes at intermediate radii, for example. In other embodiments, electrodes are arranged to reduce sensitivity to vibration and temperature, and shock stops are provided to preclude shorting in response to shocks.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 18, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Jeffrey A. Gregory, Igor P. Prikhodko
  • Publication number: 20200249020
    Abstract: An extensional mode electrostatic microelectromechanical systems (MEMS) gyroscope is described. The MEMS gyroscope operates in an extensional mode. The MEMS gyroscope comprises a vibrating ring structure that is electrostatically excited in the extensional mode.
    Type: Application
    Filed: December 16, 2019
    Publication date: August 6, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Michael Judy
  • Patent number: 10697774
    Abstract: Micromachined inertial devices are presented having multiple linearly-moving masses coupled together by couplers that move in a linear fashion when the coupled masses exhibit anti-phase motion. The couplers move in opposite directions of each other, such that one coupler on one side of the movable masses moves in a first linear direction and another coupler on the opposite side of the movable masses moves in a second linear direction opposite the first linear direction. The couplers ensure proper anti-phase motion of the masses.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: June 30, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, John A. Geen, Jeffrey A. Gregory
  • Patent number: 10627235
    Abstract: Micromachined inertial devices are presented having multiple linearly-moving masses coupled together by couplers that move in a linear fashion when the coupled masses exhibit linear anti-phase motion. Some of the described couplers are flexural and provide two degrees of freedom of motion of the coupled masses. Some such couplers are positioned between the coupled masses. Using multiple couplers which are arranged to move in linearly opposite directions during linear anti-phase motion of the coupled masses provides momentum-balanced operation.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: April 21, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Igor P. Prikhodko, Jeffrey A. Gregory