Patents by Inventor Igor Ternovskiy

Igor Ternovskiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10175349
    Abstract: A multi-modal omnidirectional sensor includes an ovaloid aperture having a plurality of tapered square prismatic cells formed from a plurality of partition walls. A focal ovaloid is concentric with the ovaloid aperture, and the focal ovaloid has an outer surface dimension that coincides with a focal distance of the ovaloid aperture. A multi-mode sensor array is disposed on the focal ovaloid, and is configured to receive an optical signal and a radio frequency (RF) signal. One of the plurality of partition walls comprises a non-metalic dielectric mirror. One of the plurality of partition walls is configured to be reflective to a band of desired wavelengths of the optical signal while being transparent to the RF signal.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 8, 2019
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Igor Ternovskiy, Tony Kim
  • Patent number: 7747085
    Abstract: Methods and apparatuses for still image compression, video compression and automatic target recognition are disclosed. The method of still image compression uses isomorphic singular manifold projection whereby surfaces of objects having singular manifold representations are represented by best match canonical polynomials to arrive at a model representation. The model representation is compared with the original representation to arrive at a difference. If the difference exceeds a predetermined threshold, the difference data are saved and compressed using standard lossy compression. The coefficients from the best match polynomial together with the difference data, if any, are then compressed using lossless compression. The method of motion estimation for enhanced video compression sends I frames on an “as-needed” basis, based on comparing the error between segments of a current frame and a predicted frame.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: June 29, 2010
    Assignee: Physical Optics Corporation
    Inventors: Andrew Kostrzewski, Igor Ternovskiy, Tomasz P. Jannson
  • Publication number: 20080159604
    Abstract: Apparatus and method for determining an extent of vascularization in which a digitaldigitalized representation of blood vessels in a selected area is generated; one or more statistical quantative measures for the blood vessels in the selected area are calculated; and the one or more statistical quantative measures are compared to corresponding statistical standards to determine an extent of vascularization. The statistical quantative measures may include the density of branch points and the density of end points in a skeleton representing the blood vessels and a fractal dimension for the skeleton.
    Type: Application
    Filed: December 30, 2005
    Publication date: July 3, 2008
    Inventors: Allan Wang, Igor Ternovskiy
  • Publication number: 20020176624
    Abstract: Methods and apparatuses for still image compression, video compression and automatic target recognition are disclosed. The method of still image compression uses isomorphic singular manifold projection whereby surfaces of objects having singular manifold representations are represented by best match canonical polynomials to arrive at a model representation. The model representation is compared with the original representation to arrive at a difference. If the difference exceeds a predetermined threshold, the difference data are saved and compressed using standard lossy compression. The coefficients from the best match polynomial together with the difference data, if any, are then compressed using lossless compression. The method of motion estimation for enhanced video compression sends I frames on an “as-needed” basis, based on comparing the error between segments of a current frame and a predicted frame.
    Type: Application
    Filed: December 21, 2000
    Publication date: November 28, 2002
    Applicant: PHYSICAL OPTICS CORPORATION
    Inventors: Andrew Kostrzewski, Igor Ternovskiy, Tomasz P. Jannson
  • Patent number: 6487312
    Abstract: Methods and apparatuses for still image compression, video compression and automatic target recognition are disclosed. The method of still image compression uses isomorphic singular manifold projection whereby surfaces of objects having singular manifold representations are represented by best match canonical polynomials to arrive at a model saved and compressed using standard lossy compression. The coefficients from the best match polynomial together with the difference data, if any, are then compressed using lossless compression. The method of motion estimation for inhanced video compression sends I frames on an “as needed” basis, based on comparing the error between segments of a current frame and a predicted frame. If the error exceeds a predetermined threshold, which can be based on program content, the next frame sent will be an I frame.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 26, 2002
    Assignee: Physical Optics Corporation
    Inventors: Andrew Kostrzewski, Igor Ternovskiy, Tomasz P. Jannson
  • Publication number: 20020015532
    Abstract: Methods and apparatuses for still image compression, video compression and automatic target recognition are disclosed. The method of still image compression uses isomorphic singular manifold projection whereby surfaces of objects having singular manifold representations are represented by best match canonical polynomials to arrive at a model representation. The model representation is compared with the original representation to arrive at a difference. If the difference exceeds a predetermined threshold, the difference data are saved and compressed using standard lossy compression. The coefficients from the best match polynomial together with the difference data, if any, are then compressed using lossless compression. The method of motion estimation for enhanced video compression sends I frames on an “as-needed” basis, based on comparing the error between segments of a current frame and a predicted frame.
    Type: Application
    Filed: December 21, 2000
    Publication date: February 7, 2002
    Applicant: PHYSICAL OPTICS CORPORATION
    Inventors: Andrew Kostrzewski, Igor Ternovskiy, Tomasz P. Jannson
  • Publication number: 20010028743
    Abstract: Methods and apparatuses for still image compression, video compression and automatic target recognition are disclosed. The method of still image compression uses isomorphic singular manifold projection whereby surfaces of objects having singular manifold representations are represented by best match canonical polynomials to arrive at a model representation. The model representation is compared with the original representation to arrive at a difference. If the difference exceeds a predetermined threshold, the difference data are saved and compressed using standard lossy compression. The coefficients from the best match polynomial together with the difference data, if any, are then compressed using lossless compression. The method of motion estimation for enhanced video compression sends I frames on an “as-needed” basis, based on comparing the error between segments of a current frame and a predicted frame.
    Type: Application
    Filed: December 21, 2000
    Publication date: October 11, 2001
    Applicant: PHYSICAL OPTICS CORPORATION:
    Inventors: Andrew Kostrzewski, Igor Ternovskiy, Tomasz P. Jannson
  • Patent number: 6167155
    Abstract: Methods and apparatuses for still image compression, video compression and automatic target recognition are disclosed. The method of still image compression uses isomorphic singular manifold projection whereby surfaces of objects having singular manifold representations are represented by best match canonical polynomials to arrive at a model representation. The model representation is compared with the original representation to arrive at a difference. If the difference exceeds a predetermined threshold, the difference data are saved and compressed using standard lossy compression. The coefficients from the best match polynomial together with the difference data, if any, are then compressed using lossless compression. The method of motion estimation for enhanced video compression sends I frames on an "as-needed" basis, based on comparing the error between segments of a current frame and a predicted frame.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: December 26, 2000
    Assignee: Physical Optics Corporation
    Inventors: Andrew Kostrzewski, Igor Ternovskiy, Tomasz P. Jannson