Patents by Inventor Igor Vasiljevic

Igor Vasiljevic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220301212
    Abstract: A method for self-supervised depth and ego-motion estimation is described. The method includes determining a multi-camera photometric loss associated with a multi-camera rig of an ego vehicle. The method also includes generating a self-occlusion mask by manually segmenting self-occluded areas of images captured by the multi-camera rig of the ego vehicle. The method further includes multiplying the multi-camera photometric loss with the self-occlusion mask to form a self-occlusion masked photometric loss. The method also includes training a depth estimation model and an ego-motion estimation model according to the self-occlusion masked photometric loss. The method further includes predicting a 360° point cloud of a scene surrounding the ego vehicle according to the depth estimation model and the ego-motion estimation model.
    Type: Application
    Filed: July 26, 2021
    Publication date: September 22, 2022
    Applicant: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Vitor GUIZILINI, Rares Andrei AMBRUS, Adrien David GAIDON, Igor VASILJEVIC, Gregory SHAKHNAROVICH
  • Patent number: 11436743
    Abstract: System, methods, and other embodiments described herein relate to semi-supervised training of a depth model using a neural camera model that is independent of a camera type. In one embodiment, a method includes acquiring training data including at least a pair of training images and depth data associated with the training images. The method includes training the depth model using the training data to generate a self-supervised loss from the pair of training images and a supervised loss from the depth data. Training the depth model includes learning the camera type by generating, using a ray surface model, a ray surface that approximates an image character of the training images as produced by a camera having the camera type. The method includes providing the depth model to infer depths from monocular images in a device.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: September 6, 2022
    Assignee: Toyota Research Institute, Inc.
    Inventors: Vitor Guizilini, Igor Vasiljevic, Rares A. Ambrus, Sudeep Pillai, Adrien David Gaidon
  • Publication number: 20220245843
    Abstract: Systems and methods for self-supervised learning for visual odometry using camera images, may include: estimating correspondences between keypoints of a target camera image and keypoints of a context camera image; based on the keypoint correspondences, lifting a set of 2D keypoints to 3D, using a neural camera model; and projecting the 3D keypoints into the context camera image using the neural camera model. Some embodiments may use the neural camera model to achieve the lifting and projecting of keypoints without a known or calibrated camera model.
    Type: Application
    Filed: April 17, 2022
    Publication date: August 4, 2022
    Inventors: VITOR GUIZILINI, Igor Vasiljevic, Rares A. Ambrus, Sudeep Pillai, Adrien Gaidon
  • Publication number: 20220148206
    Abstract: A method for monocular depth/pose estimation in a camera agnostic network is described. The method includes projecting lifted 3D points onto an image plane according to a predicted ray vector based on a monocular depth model, a monocular pose model, and a camera center of a camera agnostic network. The method also includes predicting a warped target image from a predicted depth map of the monocular depth model, a ray surface of the predicted ray vector, and a projection of the lifted 3D points according to the camera agnostic network.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 12, 2022
    Applicant: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Vitor GUIZILINI, Sudeep PILLAI, Adrien David GAIDON, Rares A. AMBRUS, Igor VASILJEVIC
  • Publication number: 20220138975
    Abstract: Systems and methods for self-supervised depth estimation using image frames captured from a camera mounted on a vehicle comprise: receiving a first image from the camera mounted at a first location on the vehicle; receiving a second image from the camera mounted at a second location on the vehicle; predicting a depth map for the first image; warping the first image to a perspective of the camera mounted at the second location on the vehicle to arrive at a warped first image; projecting the warped first image onto the second image; determining a loss based on the projection; and updating the predicted depth values for the first image.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventors: Vitor Guizilini, Igor Vasiljevic, Rares A. Ambrus, Adrien Gaidon
  • Patent number: 11321862
    Abstract: Systems and methods for self-supervised depth estimation using image frames captured from a plurality of cameras mounted on a vehicle, may include: receiving a first image from a camera mounted at a first location on the vehicle, the source image comprising pixels representing a scene of the environment of the vehicle; receiving a reference image from a camera mounted at a second location on the vehicle, the reference image comprising pixels representing a scene of the environment; predicting a depth map for the first image, the depth map comprising predicted depth values for pixels of the first image; warping the first image to a perspective of the camera mounted at the second location on the vehicle to arrive at a warped first image; projecting the warped first image onto the source image; determining a loss based on the projection; and updating the predicted depth values for the first image.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: May 3, 2022
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Vitor Guizilini, Igor Vasiljevic, Rares A. Ambrus, Adrien Gaidon
  • Publication number: 20220084232
    Abstract: Systems and methods for map construction using a video sequence captured on a camera of a vehicle in an environment, comprising: receiving a video sequence from the camera, the video sequence including a plurality of image frames capturing a scene of the environment of the vehicle; using a neural camera model to predict a depth map and a ray surface for the plurality of image frames in the received video sequence; and constructing a map of the scene of the environment based on image data captured in the plurality of frames and depth information in the predicted depth maps.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: VITOR GUIZILINI, IGOR VASILJEVIC, RARES A. AMBRUS, SUDEEP PILLAI, ADRIEN GAIDON
  • Publication number: 20220084230
    Abstract: Systems and methods for self-supervised depth estimation using image frames captured from a vehicle-mounted camera, may include: receiving a first image captured by the camera while the camera is mounted at a first location on the vehicle, the source image comprising pixels representing a scene of the environment of the vehicle; receiving a reference image captured by the camera while the camera is mounted at a second location on the vehicle, the reference image comprising pixels representing a scene of the environment; predicting a depth map for the first image comprising predicted depth values for pixels of the first image; warping the first image to a perspective of the camera at the second location on the vehicle to arrive at a warped first image; projecting the warped first image onto the source image; determining a loss based on the projection; and updating predicted depth values for the first image.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: Vitor Guizilini, Igor Vasiljevic, Rares A. Ambrus, Adrien Gaidon
  • Publication number: 20220084231
    Abstract: Systems and methods for self-supervised learning for visual odometry using camera images captured on a camera, may include: using a key point network to learn a keypoint matrix for a target image and a context image captured by the camera; using the learned descriptors to estimate correspondences between the target image and the context image; based on the keypoint correspondences, lifting a set of 2D keypoints to 3D, using a learned neural camera model; estimating a transformation between the target image and the context image using 3D-2D keypoint correspondences; and projecting the 3D keypoints into the context image using the learned neural camera model.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: VITOR GUIZILINI, Igor Vasiljevic, Rares A. Ambrus, Sudeep Pillai, Adrien Gaidon
  • Publication number: 20220084229
    Abstract: Systems and methods for self-supervised depth estimation using image frames captured from a plurality of cameras mounted on a vehicle, may include: receiving a first image from a camera mounted at a first location on the vehicle, the source image comprising pixels representing a scene of the environment of the vehicle; receiving a reference image from a camera mounted at a second location on the vehicle, the reference image comprising pixels representing a scene of the environment; predicting a depth map for the first image, the depth map comprising predicted depth values for pixels of the first image; warping the first image to a perspective of the camera mounted at the second location on the vehicle to arrive at a warped first image; projecting the warped first image onto the source image; determining a loss based on the projection; and updating the predicted depth values for the first image.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: VITOR GUIZILINI, IGOR VASILJEVIC, RARES A. AMBRUS, ADRIEN GAIDON
  • Patent number: 11257231
    Abstract: A method for monocular depth/pose estimation in a camera agnostic network is described. The method includes training a monocular depth model and a monocular pose model to learn monocular depth estimation and monocular pose estimation based on a target image and context images from monocular video captured by the camera agnostic network. The method also includes lifting 3D points from image pixels of the target image according to the context images. The method further includes projecting the lifted 3D points onto an image plane according to a predicted ray vector based on the monocular depth model, the monocular pose model, and a camera center of the camera agnostic network. The method also includes predicting a warped target image from a predicted depth map of the monocular depth model, a ray surface of the predicted ray vector, and a projection of the lifted 3D points according to the camera agnostic network.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: February 22, 2022
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Vitor Guizilini, Sudeep Pillai, Adrien David Gaidon, Rares A. Ambrus, Igor Vasiljevic
  • Publication number: 20210398301
    Abstract: A method for monocular depth/pose estimation in a camera agnostic network is described. The method includes training a monocular depth model and a monocular pose model to learn monocular depth estimation and monocular pose estimation based on a target image and context images from monocular video captured by the camera agnostic network. The method also includes lifting 3D points from image pixels of the target image according to the context images. The method further includes projecting the lifted 3D points onto an image plane according to a predicted ray vector based on the monocular depth model, the monocular pose model, and a camera center of the camera agnostic network. The method also includes predicting a warped target image from a predicted depth map of the monocular depth model, a ray surface of the predicted ray vector, and a projection of the lifted 3D points according to the camera agnostic network.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 23, 2021
    Applicant: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Vitor GUIZILINI, Sudeep PILLAI, Adrien David GAIDON, Rares A. AMBRUS, Igor VASILJEVIC
  • Publication number: 20210281814
    Abstract: System, methods, and other embodiments described herein relate to improving depth estimates for monocular images using a neural camera model that is independent of a camera type. In one embodiment, a method includes receiving a monocular image from a pair of training images derived from a monocular video. The method includes generating, using a ray surface network, a ray surface that approximates an image character of the monocular image as produced by a camera having the camera type. The method includes creating a synthesized image according to at least the ray surface and a depth map associated with the monocular image.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 9, 2021
    Inventors: Vitor Guizilini, Igor Vasiljevic, Rares A. Ambrus, Sudeep Pillai, Adrien David Gaidon
  • Publication number: 20210004974
    Abstract: System, methods, and other embodiments described herein relate to semi-supervised training of a depth model using a neural camera model that is independent of a camera type. In one embodiment, a method includes acquiring training data including at least a pair of training images and depth data associated with the training images. The method includes training the depth model using the training data to generate a self-supervised loss from the pair of training images and a supervised loss from the depth data. Training the depth model includes learning the camera type by generating, using a ray surface model, a ray surface that approximates an image character of the training images as produced by a camera having the camera type. The method includes providing the depth model to infer depths from monocular images in a device.
    Type: Application
    Filed: June 19, 2020
    Publication date: January 7, 2021
    Inventors: Vitor Guizilini, Igor Vasiljevic, Rares A. Ambrus, Sudeep Pillai, Adrien David Gaidon