Patents by Inventor Igor Vilfan

Igor Vilfan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10858651
    Abstract: Methods are provided for reducing the complexity of a population of nucleic acids prior to performing an analysis of the nucleic acids, e.g., sequence analysis. The methods result in a subset of the initial population enriched for a target region, which is typically located within one or more target fragments. The methods are particularly useful for analyzing populations having a high degree of complexity, e.g., chromosomal-derived DNA, whole genomic DNA, or mRNA populations.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: December 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Yu-Chih Tsai, Igor Vilfan, Khai Luong
  • Publication number: 20200109396
    Abstract: Methods are provided for reducing the complexity of a population of nucleic acids prior to performing an analysis of the nucleic acids, e.g., sequence analysis. The methods result in a subset of the initial population enriched for a target region, which is typically located within one or more target fragments. The methods are particularly useful for analyzing populations having a high degree of complexity, e.g., chromosomal-derived DNA, whole genomic DNA, or mRNA populations.
    Type: Application
    Filed: August 28, 2019
    Publication date: April 9, 2020
    Inventors: Yu-Chih Tsai, Igor Vilfan, Khai Luong
  • Patent number: 9879318
    Abstract: The present invention provides methods and compositions useful for supplying high throughput nucleic acid sequencing systems with templates. The methods circumvent the need for costly, labor-intensive cloning and cell culture methods and can be scaled to accommodate template production for a variety of sequencing applications, e.g., sequencing individuals' genomes, sequencing subpopulations of transcripts from a gene of interest, and/or gene expression profiling. Particularly preferred embodiments of the methods vastly improve the preparation of cDNA from mRNA samples, e.g., by randomizing errors introduced during the process, thereby allowing these errors to be readily distinguished from true variants present in the mRNA samples.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: January 30, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Igor Vilfan, Stephen Turner
  • Patent number: 9175338
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 3, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes, Joseph Puglisi
  • Publication number: 20150072869
    Abstract: The present invention provides methods and compositions useful for supplying high throughput nucleic acid sequencing systems with templates. The methods circumvent the need for costly, labor-intensive cloning and cell culture methods and can be scaled to accommodate template production for a variety of sequencing applications, e.g., sequencing individuals' genomes, sequencing subpopulations of transcripts from a gene of interest, and/or gene expression profiling. Particularly preferred embodiments of the methods vastly improve the preparation of cDNA from mRNA samples, e.g., by randomizing errors introduced during the process, thereby allowing these errors to be readily distinguished from true variants present in the mRNA samples.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 12, 2015
    Inventors: Igor Vilfan, Stephen Turner
  • Publication number: 20110183320
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Application
    Filed: November 12, 2010
    Publication date: July 28, 2011
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Jonas Korlach, Jeffrey Wegener, Tyson A. Clark, Igor Vilfan, Andrey Kislyuk, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner, Austin B. Tomaney, Patrick Marks, Jessica Lee, Lei Jia, Dale Webster, John Lyle, Jeremiah Hanes, Joseph Puglisi