Patents by Inventor Igor Yurievich Konyashin

Igor Yurievich Konyashin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230012341
    Abstract: A polycrystalline diamond construction has a body of polycrystalline diamond (PCD) material; and a cemented carbide substrate bonded to the body of polycrystalline material along an interface. The cemented carbide substrate has tungsten carbide particles bonded together by a binder material, the binder material comprising Co; and the tungsten carbide particles form at least around 70 weight percent and at most around 95 weight percent of the substrate. The cemented carbide substrate has a bulk volume, the bulk volume of the cemented carbide substrate having at least around 0.1 vol. % of inclusions of free carbon having a largest average size in any one or more dimensions of less than around 40 microns.
    Type: Application
    Filed: December 31, 2020
    Publication date: January 12, 2023
    Applicants: Element Six (UK) Limited, Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Rachael Fiona Ambury, Sebastian Farag, Roger William Nigel Nilen, Raymond Anthony Spits
  • Publication number: 20230001479
    Abstract: A polycrystalline diamond construction has a body of polycrystalline diamond (PCD) material; and a cemented carbide substrate bonded to the body of polycrystalline material along an interface. The cemented carbide substrate includes tungsten carbide particles bonded together by a binder material, the binder material comprising an alloy of Co, Ni and Cr; and the tungsten carbide particles form at least around 70 weight percent and at most around 95 weight percent of the substrate. The cemented carbide substrate has a bulk volume, the bulk volume of the cemented carbide substrate has at least around 0.1 vol. % of inclusions of free carbon having a largest average size in any one or more dimensions of less than around 40 microns.
    Type: Application
    Filed: December 31, 2020
    Publication date: January 5, 2023
    Applicants: Element Six (UK) Limited, Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Rachael Fiona Ambury, Sebastian Farag, Roger William Nigel Nilen, Raymond Anthony Spits
  • Publication number: 20220056617
    Abstract: Polycrystalline material comprising a plurality of nano-grains of a crystalline phase of an iron group element and a plurality of crystalline grains of material including carbon (C) or nitrogen (N); each nano-grain having a mean size less than 10 nanometres.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Applicant: ELEMENT SIX GMBH
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Publication number: 20210276092
    Abstract: This disclosure relates to a method of producing a tool comprising a substrate and a hard-face coating metallurgically bonded to the substrate. The method comprises the steps of: providing a steel substrate; providing a composition of fully sintered granulate grains; and then applying the fully sintered granulate grains onto the substrate. The resultant cemented carbide material on the steel substrate comprises a specific composition and includes a metastable phase having a nanohardness of at least 12 GPa and a Palmqvist fracture toughness of below 7 MPa m½. The method includes heat-treating the hard-face coating to at least partially decompose the metastable phase, to increase the Palmqvist fracture toughness.
    Type: Application
    Filed: August 15, 2019
    Publication date: September 9, 2021
    Applicant: ELEMENT SIX GMBH
    Inventors: IGOR YURIEVICH KONYASHIN, HAUKE HINNERS, BERND HEINRICH RIES
  • Publication number: 20210222273
    Abstract: A cemented carbide material comprises WC, between around 3 to around 10 wt. % Co and between around 0.5 to around 8 wt. % Re. The equivalent total carbon (ETC) content of the cemented carbide material with respect to WC is between around 6.3 wt. % to around 6.9 wt. % and the cemented carbide material is substantially free of eta-phase and free carbon. There is also disclosed a method of producing such a material and use of such a material.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Igor Yurievich KONYASHIN, Bernd Heinrich RIES, Frank Friedrich LACHMANN
  • Patent number: 11047026
    Abstract: A cemented carbide body is provided with improved resistance to mechanical fatigue. The cemented carbide body comprises tantalum in the binder matrix material. The tantalum content is between 1.5 weight per cent and 3.5 weight per cent of the binder content.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: June 29, 2021
    Assignee: Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries
  • Patent number: 10946445
    Abstract: A method of fabricating a cemented carbide article by additive manufacturing, and a granular material are disclosed. A precursor material is provided that comprises granules, the granules comprising carbide grains and a binder comprising any of cobalt, nickel and iron. Each granule has a density of at least 99.5% of the theoretical density and the granules of the precursor material have a mean compressive strength of at least 40 megapascals (MPa). An additive manufacturing process is used to manufacture the article by building up successive layers of material derived from the precursor material.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 16, 2021
    Assignee: Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Hauke Hinners
  • Patent number: 10781512
    Abstract: A method for coating a body includes providing a plurality of granules in which each granule includes silicon (Si), carbon (C), chromium (Cr) and an iron group metal. The relative quantities of the Si, C and Cr are such that a molten phase will form at a melting temperature of less than 1,300 degrees Celsius when a threshold quantity of the iron group metal is accessible to the Si, C and Cr. A second source of the iron group metal is also provided. A combination of the granules and the second source is formed such that the threshold quantity of the iron group metal will be accessible to the Si, C and Cr. The granules and the second source are heated to the melting temperature to form the molten phase in contact with the body. The heat is then removed to allow the molten phase to solidify.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: September 22, 2020
    Assignee: Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Daniel Hlawatschek, Bernd Heinrich Ries
  • Publication number: 20190368011
    Abstract: A cemented carbide material comprises WC, between around 3 to around 10 wt. % Co and between around 0.5 to around 8 wt. % Re. The equivalent total carbon (ETC) content of the cemented carbide material with respect to WC is between around 6.3 wt. % to around 6.9 wt. % and the cemented carbide material is substantially free of eta-phase and free carbon. There is also disclosed a method of producing such a material and use of such a material.
    Type: Application
    Filed: February 22, 2019
    Publication date: December 5, 2019
    Inventors: Igor Yurievich KONYASHIN, Bernd Heinrich RIES, Frank Friedrich LACHMANN
  • Publication number: 20190345589
    Abstract: A cemented carbide body is provided with improved resistance to mechanical fatigue. The cemented carbide body comprises tantalum in the binder matrix material. The tantalum content is between 1.5 weight per cent and 3.5 weight per cent of the binder content.
    Type: Application
    Filed: August 16, 2018
    Publication date: November 14, 2019
    Applicant: ELEMENT SIX GMBH
    Inventors: IGOR YURIEVICH KONYASHIN, BERND HEINRICH RIES
  • Patent number: 10415120
    Abstract: A cemented carbide material comprising tungsten carbide grains, the content of tungsten carbide in the cemented carbide material being at least 75 weight percent and at most 95 weight percent. The cemented carbide material comprises a binder phase comprising any of cobalt, iron, or nickel, and nanoparticles. The nanoparticles include material according to the formula CoxWyCz, where x is a value in the range from 1 to 7, y is a value in the range from 1 to 10 and z is a value in the range from 0 to 4. The nanoparticles have a mean grain size of no more than 10 nm and at least 10 percent of the nanoparticles have a size of at most 5 nm. The volume percent of the tungsten carbide grains having a grain size of no more than 1 ?m is less than 4 percent. A method for producing the cemented carbide material is also disclosed.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: September 17, 2019
    Assignee: Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries
  • Publication number: 20190001414
    Abstract: A method of fabricating a cemented carbide article by additive manufacturing, and a granular material are disclosed. A precursor material is provided that comprises granules, the granules comprising carbide grains and a binder comprising any of cobalt, nickel and iron. Each granule has a density of at least 99.5% of the theoretical density and the granules of the precursor material have a mean compressive strength of at least 40 megapascals (MPa). An additive manufacturing process is used to manufacture the article by building up successive layers of material derived from the precursor material.
    Type: Application
    Filed: December 19, 2016
    Publication date: January 3, 2019
    Applicant: Element Six GmbH
    Inventors: Igor Yurievich KONYASHIN, Bernd Heinrich RIES, Hauke HINNERS
  • Publication number: 20180274065
    Abstract: A cemented carbide material comprising tungsten carbide grains, the content of tungsten carbide in the cemented carbide material being at least 75 weight percent and at most 95 weight percent. The cemented carbide material comprises a binder phase comprising any of cobalt, iron, or nickel, and nanoparticles. Te nanoparticles include material according to the formula CoxWyCz, where x is a value in the range from 1 to 7, y is a value in the range from 1 to 10 and z is a value in the range from 0 to 4. The nanoparticles have a mean grain size of no more than 10 nm and at least 10 percent of the nanoparticles have a size of at most 5 nm. The volume percent of the tungsten carbide grains having a grain size of no more than 1 ?m is less than 4 percent. A method for producing the cemented carbide material is also disclosed.
    Type: Application
    Filed: September 28, 2016
    Publication date: September 27, 2018
    Applicant: ELEMENT SIX GMBH
    Inventors: IGOR YURIEVICH KONYASHIN, BERND HEINRICH RIES
  • Patent number: 9895789
    Abstract: A polycrystalline diamond composite compact element comprises a body of polycrystalline diamond material and a cemented carbide substrate bonded to the body of polycrystalline material. The cemented carbide substrate has tungsten carbide particles bonded together by a binder material comprising an alloy of Co, Ni and Cr. The tungsten carbide particles form between 70 weight percent and 95 weight percent of the substrate. The binder material comprises between about 10 to 50 wt. % Ni, between about 0.1 to 10 wt. % Cr, and the remainder weight percent comprising Co. The size distribution of the tungsten carbide particles in the substrate has fewer than 17 percent of the carbide particles with a grain size of equal to or less than about 0.3 microns, between about 20 to 28 percent of the tungsten carbide particles having a grain size of between about 0.3 to 0.5 microns; between about 42 to 56 percent of the tungsten carbide particles having a grain size of between about 0.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: February 20, 2018
    Assignee: ELEMENT SIX GMBH
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Publication number: 20170029929
    Abstract: A method and granules for coating a body. Each granule comprises silicon (Si), carbon (C), chromium (Cr) and iron group metal selected from iron (Fe), cobalt (Co) and nickel (Ni). The relative quantities of the Si, C and Cr are such that a molten phase comprising the Si, C, Cr and the iron group metal will form at a melting temperature of less than 1,300 degrees Celsius when at least a threshold quantity of the iron group metal is accessible to the Si, C and Cr; but each granule comprising substantially less than the threshold quantity of the iron group metal. A second source of the iron group metal is provided. A combination of the granules and the second source is formed such that at least the threshold quantity of the iron group metal will be accessible to the Si, C and Cr. The granules and the second source are heated to at least the melting temperature to form the molten phase in contact with the body. The heat is then removed to allow the molten phase to solidify and to provide the coated body.
    Type: Application
    Filed: May 22, 2015
    Publication date: February 2, 2017
    Applicant: ELEMENT SIX GMBH
    Inventors: IGOR YURIEVICH KONYASHIN, DANIEL HLAWATSCHEK, BERND HEINRICH RIES
  • Patent number: 9314847
    Abstract: Cemented carbide material comprising tungsten carbide (WC) material in particulate form having a mean grain size D in terms of equivalent circle diameter of at least 0.5 microns and at most 10 microns, and a binder phase comprising cobalt (Co) of at least 5 weight per cent and at most 12 weight per cent, W being present in the binder at a content of at least 10 weight per cent of the binder material; the content of the WC material being at least 75 weight per cent and at most 95 weight per cent; and nanoparticles dispersed in the binder material, the nanoparticles comprising material according to the formula CoxWyCz, where X is a value in the range from 1 to 7, Y is a value in the range from 1 to 10 and Z is a value in the range from 0 to 4; the nanoparticles having a mean particle size at most 10 nm, at least 10 per cent of the nanoparticles having size of at most 5 nm; the cemented carbide material having a magnetic coercive force in the units kA/m of at least ?2.1XD+14.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: April 19, 2016
    Assignee: Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Patent number: 9297054
    Abstract: The present invention relates to a cemented carbide article comprising a core of metal carbide grains and a binder selected from cobalt, nickel, iron and alloys containing one or more of these metals and a surface layer defining an outer surface for the article, the surface layer comprising 5 to 25 weight percent of tungsten and 0.1 to 5 weight percent carbon, the balance of the surface layer comprising a metal or alloy selected from the binder metals and alloys and the surface layer being substantially free of carbide grains as determined by optical microscopy or SEM. A method for the production of a cemented carbide article is also provided.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: March 29, 2016
    Assignee: Element Six GmbH
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Christina Lachmann
  • Publication number: 20150376744
    Abstract: A cemented carbide material comprises WC, between around 3 to around 10 wt. % Co and between around 0.5 to around 8 wt. % Re. The equivalent total carbon (ETC) content of the cemented carbide material with respect to WC is between around 6.3 wt. % to around 6.9 wt. % and the cemented carbide material is substantially free of eta-phase and free carbon. There is also disclosed a method of producing such a material and use of such a material.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 31, 2015
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Publication number: 20150360291
    Abstract: Cemented carbide material comprising tungsten carbide (WC) material in particulate form having a mean grain size D in terms of equivalent circle diameter of at least 0.5 microns and at most 10 microns, and a binder phase comprising cobalt (Co) of at least 5 weight per cent and at most 12 weight per cent, W being present in the binder at a content of at least 10 weight per cent of the binder material; the content of the WC material being at least 75 weight per cent and at most 95 weight per cent; and nanoparticles dispersed in the binder material, the nanoparticles comprising material according to the formula CoxWyCz, where X is a value in the range from 1 to 7, Y is a value in the range from 1 to 10 and Z is a value in the range from 0 to 4; the nanoparticles having a mean particle size at most 10 nm, at least 10 per cent of the nanoparticles having size of at most 5 nm; the cemented carbide material having a magnetic coercive force in the units kA/m of at least ?2.1×D+14.
    Type: Application
    Filed: September 2, 2015
    Publication date: December 17, 2015
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Publication number: 20150111065
    Abstract: Polycrystalline material comprising a plurality of nano-grains of a crystalline phase of an iron group element and a plurality of crystalline grains of material including carbon (C) or nitrogen (N); each nano-grain having a mean size less than 10 nanometres.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 23, 2015
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann