Patents by Inventor Ijaz C. Ahmed

Ijaz C. Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9321639
    Abstract: This invention relates to a process for co-producing methanol and ammonia, wherein a syngas mixture consisting essentially of carbon monoxide (CO), carbon dioxide (CO2) and hydrogen (H2) is first partially reacted in a methanol once-through reactor, unreacted syngas is divided into a first and a second stream, the first stream is purified and fed to an ammonia synthesis section, and the second stream is fed to a methanol synthesis and purification section. With this process it is possible to produce methanol and ammonia at very high capacities in an integrated single process, applying unit operations not exceeding current practical capacity limitations. For example, the process allows production of 8000 mtpd of methanol and 2000 mtpd of ammonia starting from natural gas and air. The process further shows a balanced production of ammonia and carbon dioxide, thus allowing co-production of urea also to be integrated.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 26, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Ijaz C. Ahmed, Mubarak Bashir
  • Patent number: 8961829
    Abstract: The invention relates to a process of making a syngas mixture containing hydrogen, carbon monoxide and carbon dioxide, comprising a step of contacting a gaseous feed mixture containing carbon dioxide and hydrogen with a catalyst, which catalyst substantially consists of Mn oxide and an oxide of at least one member selected from the group consisting of Cr, Ni, La, Ce, W, and Pt. This process enables hydrogenation of carbon dioxide into carbon monoxide with high selectivity, and good catalyst stability over time and under variations in processing conditions. The process can be applied separately, but can also be integrated with other processes, both up-stream and/or down-stream; like methane reforming or other synthesis processes for making products like alkanes, aldehydes, or alcohols.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 24, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Agaddin M. Kh. Mamedov, Abdulaziz A. M. Al-Jodai, Ijaz C. Ahmed, Mubarak Bashir
  • Publication number: 20120148472
    Abstract: This invention relates to a process for co-producing methanol and ammonia, wherein a syngas mixture consisting essentially of carbon monoxide (CO), carbon dioxide (CO2) and hydrogen (H2) is first partially reacted in a methanol once-through reactor, unreacted syngas is divided into a first and a second stream, the first stream is purified and fed to an ammonia synthesis section, and the second stream is fed to a methanol synthesis and purification section. With this process it is possible to produce methanol and ammonia at very high capacities in an integrated single process, applying unit operations not exceeding current practical capacity limitations. For example, the process allows production of 8000 mtpd of methanol and 2000 mtpd of ammonia starting from natural gas and air. The process further shows a balanced production of ammonia and carbon dioxide, thus allowing co-production of urea also to be integrated.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 14, 2012
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Ijaz C. Ahmed, Mubarak Bashir
  • Publication number: 20100190874
    Abstract: The invention relates to a process of making a syngas mixture containing hydrogen, carbon monoxide and carbon dioxide, comprising a step of contacting a gaseous feed mixture containing carbon dioxide and hydrogen with a catalyst, which catalyst substantially consists of Mn oxide and an oxide of at least one member selected from the group consisting of Crl Ni, La, Ce, W, and Pt. This process enables hydrogenation of carbon dioxide into carbon monoxide with high selectivity, and good catalyst stability over time and under variations in processing conditions. The process can be applied separately, but can also be integrated with other processes, both up-stream and/or down-stream; like methane reforming or other synthesis processes for making products like alkanes, aldehydes, or alcohols.
    Type: Application
    Filed: April 23, 2008
    Publication date: July 29, 2010
    Inventors: Agaddin M.Kh. Mamedov, Abdulaziz A.M. Al-Jodai, Ijaz C. Ahmed, Mubarak Bashir