Patents by Inventor Ikuo Ohnuma

Ikuo Ohnuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9617622
    Abstract: A hydrogen gas generating member includes a metal alloy having dispersed aluminum. The metal alloy includes an Al—X alloy, where X is Sn: 10.1 to 99.5% by mass, Bi: 30.1 to 99.5% by mass, In: 10.1 to 99.5% by mass, Sn +Bi: 20.1 to 99.5% by mass, Sn +In: to 10 to 99.5% by mass, Bi+In: 20.1 to 99.5% by mass, or Sn+Bi+In: 20 to 99.5% by mass. Hydrogen gas is generated by bringing the hydrogen gas generating member into contact with water.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 11, 2017
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Yoshikazu Takaku, Takehito Hagisawa
  • Patent number: 9453274
    Abstract: A process for producing a Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the L12 type [Co3 (Al,W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3 (Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: September 27, 2016
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katunari Oikawa, Ikuo Ohnuma, Jun Sato
  • Patent number: 8815027
    Abstract: An Fe-based shape memory alloy comprising 25-42 atomic % of Mn, 12-18 atomic % of Al, and 5-12 atomic % of Ni, the balance being Fe and inevitable impurities, and an Fe-based shape memory alloy comprising 25-42 atomic % of Mn, 12-18 atomic % of Al, and 5-12 atomic % of Ni, as well as 15 atomic % or less in total of at least one selected from the group consisting of 0.1-5 atomic % of Si, 0.1-5 atomic % of Ti, 0.1-5 atomic % of V, 0.1-5 atomic % of Cr, 0.1-5 atomic % of Co, 0.1-5 atomic % of Cu, 0.1-5 atomic % of Mo, 0.1-5 atomic % of W, 0.001-1 atomic % of B and 0.001-1 atomic % of C, the balance being Fe and inevitable impurities.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 26, 2014
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Keisuke Ando
  • Publication number: 20140007995
    Abstract: A process for producing a Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the L12 type [Co3 (Al, W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3 (Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 9, 2014
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katunari Oikawa, Ikuo Ohnuma, Jun Sato
  • Publication number: 20130333812
    Abstract: To provide a copper alloy of the FCC structure containing Ni: 3.0 to 29.5 mass %, Al: 0.5 to 7.0 mass %, and Si: 0.1 to 1.5 mass %, with the remainder consisting of Cu and incidental impurities, wherein the copper alloy is of the high strength, but is excellent in workability, and has high electrical conductivity, and can control property thereof, by precipitating a ?? phase of the L12 structure including Si at an average particle diameter of 100 nm or less in a parent phase of the copper alloy.
    Type: Application
    Filed: December 13, 2011
    Publication date: December 19, 2013
    Applicants: Tohoku Techno Arch Co., Ltd., Nippon Seisen Co., Ltd.
    Inventors: Kiyohito Ishida, Rysuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Takashi Miyamoto, Hiroki Sato
  • Patent number: 8551265
    Abstract: A Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the Ll2 type [Co3(Al,W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3(Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: October 8, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katunari Oikawa, Ikuo Ohnuma, Jun Sato
  • Patent number: 8283783
    Abstract: A zinc based solder material 55 of the present invention is prepared by providing on the surface of a zinc based material 50, from which an oxide film 501 has been removed or at which an oxide film 501 does not exist, with a coating layer 51 containing primarily a metal whose oxide is more easily reducible than the oxide film 501. In a joined body and a power semiconductor module of the present invention, the zinc based solder material 55 is used in the joining portion, and after joining, the coating layer 51 does not exist.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 9, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Tohoku University
    Inventors: Yasushi Yamada, Yuji Yagi, Yoshikazu Takaku, Ikuo Ohnuma, Kiyohito Ishida, Takashi Atsumi, Ikuo Nakagawa, Mikio Shirai
  • Publication number: 20120199253
    Abstract: An Fe-based shape memory alloy comprising 25-42 atomic % of Mn, 12-18 atomic % of Al, and 5-12 atomic % of Ni, the balance being Fe and inevitable impurities, and an Fe-based shape memory alloy comprising 25-42 atomic % of Mn, 12-18 atomic % of Al, and 5-12 atomic % of Ni, as well as 15 atomic % or less in total of at least one selected from the group consisting of 0.1-5 atomic % of Si, 0.1-5 atomic % of Ti, 0.1-5 atomic % of V, 0.1-5 atomic % of Cr, 0.1-5 atomic % of Co, 0.1-5 atomic % of Cu, 0.1-5 atomic % of Mo, 0.1-5 atomic % of W, 0.001-1 atomic % of B and 0.001-1 atomic % of C, the balance being Fe and inevitable impurities.
    Type: Application
    Filed: October 6, 2010
    Publication date: August 9, 2012
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Keisuke Ando
  • Publication number: 20120107228
    Abstract: There is provided a hydrogen gas generating member which safely facilitates the hydrogen gas generation reaction by bringing an Al alloy which is subjected to rolling treatment or powdering treatment into contact with water. A hydrogen gas generating member 20 includes a texture in which Al is finely dispersed in a metal matrix, where hydrogen gas is generated by bringing the hydrogen gas generating member into contact with water. A fixing member 14 for mounting the hydrogen gas generating member 20 is provided in a hydrogen generating apparatus 10 and is brought into contact with a water 15 that is stored inside. The hydrogen gas generated from the surface is supplied outside through a hydrogen gas collecting, pipe 12 and stored in a storage tank (not shown).
    Type: Application
    Filed: August 11, 2008
    Publication date: May 3, 2012
    Applicant: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Yoshikazu Takaku, Takehito Hagisawa
  • Publication number: 20100193801
    Abstract: A zinc based solder material 55 of the present invention is prepared by providing on the surface of a zinc based material 50, from which an oxide film 501 has been removed or at which an oxide film 501 does not exist, with a coating layer 51 containing primarily a metal whose oxide is more easily reducible than the oxide film 501. In a joined body and a power semiconductor module of the present invention, the zinc based solder material 55 is used in the joining portion, and after joining, the coating layer 51 does not exist.
    Type: Application
    Filed: November 19, 2008
    Publication date: August 5, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOHOKU UNIVERSITY
    Inventors: Yasushi Yamada, Yuji Yagi, Yoshikazu Takaku, Ikuo Ohnuma, Kiyohito Ishida, Takashi Atsumi, Ikuo Nakagawa, Mikio Shirai
  • Publication number: 20100109016
    Abstract: Provided is a power semiconductor module in which two components are bonded by a Bi based solder material. A Cu layer is provided on the surfaces thereof to be bonded by the Bi based solder material on the two-component. Two components, i.e., the components to be bonded, are a combination of a semiconductor element and an insulating part, or a combination of an insulating part and a radiator plate. The insulating part is composed of a Cu/SiNx/Cu laminated body.
    Type: Application
    Filed: April 17, 2008
    Publication date: May 6, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuji Yagi, Yasushi Yamada, Ikuo Nakagawa, Takashi Atsumi, Mikio Shirai, Ikuo Ohnuma, Kiyohito Ishida, Yoshikazu Takaku
  • Patent number: 7666352
    Abstract: An iridium-based alloy which has L12-type intermetallic compounds dispersedly precipitated therein and has a basic composition including, in terms of mass proportion, 0.1 to 9.0% Al, 1.0 to 45% W, and Ir as the remainder. The component system containing 0.1 to 1.5% Al has L12-type intermetallic compounds dispersedly precipitated therein. The component system containing 1.5 to 9.0%, excluding 1.5%, Al has L12-type and B2-type intermetallic compounds dispersedly precipitated therein. Part of the Ir may be replaced with an element (X) (Co, Ni, Fe, Cr, Rh, Re, Pd, Pt, or Ru) and part of the Al and W may be replaced with an element (Z) (Ni, Ti, Nb, Zr, V, Ta, Hf, or Mo). The iridium-based alloy, which contains L12-type intermetallic compounds [1r3(Al,W) and [(Ir, X)3(Al, W, Z)] dispersedly precipitated therein, has a high melting point. The lattice constant mismatch between the L12-type intermetallic compounds, i.e.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: February 23, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katsunari Oikawa, Ikuo Ohnuma, Toshihiro Ohmori, Jun Sato
  • Publication number: 20080206090
    Abstract: An iridium-based alloy which has Ll2-type intermetallic compounds dispersedly precipitated therein and has a basic composition including, in terms of mass proportion, 0.1 to 9.0% Al, 1.0 to 45% W, and Ir as the remainder. The component system containing 0.1 to 1.5% Al has L12-type intermetallic compounds dispersedly precipitated therein. The component system containing 1.5 to 9.0%, excluding 1.5%, Al has Ll2-type and B2-type intermetallic compounds dispersedly precipitated therein. Part of the Ir may be replaced with an element (X) (Co, Ni, Fe, Cr, Rh, Re, Pd, Pt, or Ru) and part of the Al and W may be replaced with an element (Z) (Ni, Ti, Nb, Zr, V, Ta, Hf, or Mo). The iridium-based alloy, which contains L12-type intermetallic compounds [1r3(Al,W) and [(Ir, X)3(Al, W, Z)] dispersedly precipitated therein, has a high melting point. The lattice constant mismatch between the L12-type intermetallic compounds, i.e.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 28, 2008
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Kiyohito ISHIDA, Ryosuke KAINUMA, Katsunari OIKAWA, Ikuo OHNUMA, Toshihiro OHMORI, Jun SATO
  • Publication number: 20080185078
    Abstract: A Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the Ll2 type [Co3(Al,W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3(Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.
    Type: Application
    Filed: February 25, 2008
    Publication date: August 7, 2008
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Kiyohito ISHIDA, Ryosuke KAINUMA, Katunari OIKAWA, Ikuo OHNUMA, Jun SATO
  • Patent number: 7261760
    Abstract: A member having a separated structure made by an alloy consisting of two regions having different compositions with each other is formed by casting a molten alloy into a prescribed shape, or by spray-quenching the same from a temperature of Tc+10° C. or more, wherein the molten alloy exhibits two phase separation in a liquid state having a temperature difference ?T between the maximum temperature Tc (° C.) and minimum temperature Td (° C.) in the region of two phase separation in the liquid state being 10° C. or more, and the molten alloy has a mean composition with a difference of the volume fraction between the two liquid phases of 5% by volume or more. The suitable alloy is a Cu—Fe—X alloy, a Cu—Cr—X alloy, a Cu—Co—X alloy, a Cu—Bi—X alloy, an Al—Sn—X alloy or an Al—In—X alloy.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: August 28, 2007
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma
  • Publication number: 20060210790
    Abstract: A thermoelectric module comprises a plurality of thermoelectric elements which are arranged between a pair of substrates having electrode patterns and which are bonded with the electrode patterns via solder in which at least one dispersion phase is dispersed into a matrix phase, wherein the melting temperature of the dispersion phase is higher than that of the matrix phase (i.e., 240° C. or over), and the dispersion phase comprises fine particles whose average diameter is 5 ?m or less. The solder is constituted by an alloy so as to realize a volume ratio of 40% or less, wherein it is composed of a Bi—Cu—X alloy or a Bi—Zn—X alloy (where ‘X’ represents at least one element selected in advance). Preferably, the solder is constituted by powder containing fine particles whose average diameter is 100 ?m or less or thin plates whose average thickness is 500 ?m or less.
    Type: Application
    Filed: November 24, 2004
    Publication date: September 21, 2006
    Inventors: Yuma Horio, Takahiro Hayashi, Kenzaburo Iijima, Junya Suzuki, Masayoshi Sekine, Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Yoshikazu Takaku, Cui Wang
  • Publication number: 20040108597
    Abstract: A member having a separated structure made by an alloy consisting of two regions having different compositions with each other is formed by casting a molten alloy into a prescribed shape, or by spray-quenching the same from a temperature of Tc+10° C. or more, wherein the molten alloy exhibits two phase separation in a liquid state having a temperature difference &Dgr;T between the maximum temperature Tc (° C.) and minimum temperature Td (° C.) in the region of two phase separation in the liquid state being 10° C. or more, and the molten alloy has a mean composition with a difference of the volume fraction between the two liquid phases of 5% by volume or more. The suitable alloy is a Cu—Fe—X alloy, a Cu—Cr—X alloy, a Cu—Co—X alloy, a Cu—Bi—X alloy, an Al—Sn—X alloy or an Al—In—X alloy.
    Type: Application
    Filed: September 5, 2003
    Publication date: June 10, 2004
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma