Patents by Inventor Ilhan Aksay

Ilhan Aksay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7179356
    Abstract: A process directed to preparing surfactant-polycrystalline inorganic nanostructured materials having designed microscopic patterns. The process includes forming a polycrystalline inorganic substrate having a flat surface and placing in contact with the flat surface of the substrate a surface having a predetermined microscopic pattern. An acidified aqueous reacting solution is then placed in contact with an edge of the surface having the predetermined microscopic pattern. The solution wicks into the microscopic pattern by capillary action. The reacting solution has an effective amount of a silica source and an effective amount of a surfactant to produce a mesoscopic silica film upon contact of the reacting solution with the flat surface of the polycrystalline inorganic substrate and absorption of the surfactant into the surface. Subsequently an electric field is applied tangentially directed to the surface within the microscopic pattern.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: February 20, 2007
    Assignee: The Trustees of Princeton University
    Inventors: Ilhan A. Aksay, Mathias Trau, Srinivas Manne, Itaru Honma, George Whitesides
  • Publication number: 20050137315
    Abstract: The present invention provides thermal insulator composites based upon nanostructured L3-silica microparticles and polyurethane foam chemistry that are both easy to process and have superior insulating properties for use in household and commercial refrigeration, construction, and shipping applications. The composite material retains many of the attractive processing characteristics of polyurethane foams such as volume expansion and shape-filling during polymerization and demonstrates a total thermal conductivity between 32 and 44% that of commercially available polyurethane foams.
    Type: Application
    Filed: May 10, 2004
    Publication date: June 23, 2005
    Inventors: Ilhan Aksay, Christopher Wahl, Daniel Dabbs, Iskender Yilgor
  • Publication number: 20040020774
    Abstract: A process directed to preparing surfactant-polycrystalline inorganic nanostructured materials having designed microscopic patterns. The process includes forming a polycrystalline inorganic substrate having a flat surface and placing in contact with the flat surface of the substrate a surface having a predetermined microscopic pattern. An acidified aqueous reacting solution is then placed in contact with an edge of the surface having the predetermined microscopic pattern. The solution wicks into the microscopic pattern by capillary action. The reacting solution has an effective amount of a silica source and an effective amount of a surfactant to produce a mesoscopic silica film upon contact of the reacting solution with the flat surface of the polycrystalline inorganic substrate and absorption of the surfactant into the surface. Subsequently an electric field is applied tangentially directed to the surface within the microscopic pattern.
    Type: Application
    Filed: April 11, 2003
    Publication date: February 5, 2004
    Inventors: Ilhan A. Aksay, Mathias Trau, Srinivas Manne, Itaru Honma, George Whitesides
  • Patent number: 6638885
    Abstract: A mesoporous ceramic material is provided having a pore size diameter in the range of about 10-100 nanometers produced by templating with a ceramic precursor a lyotropic liquid crystalline L3 phase consisting of a three-dimensional, random, nonperiodic network packing of a multiple connected continuous membrane. A preferred process for producing the inesoporous ceramic material includes producing a template of a lyotropic liquid crystalline L3 phase by mixing a surfactant, a co-surfactant and hydrochloric acid, coating the template with an inorganic ceramic precursor by adding to the L3 phase tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) and then converting the coated template to a ceramic by removing any remaining liquids.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: October 28, 2003
    Assignee: The Trustees of Princeton University
    Inventors: Kathryn M. McGrath, Daniel M. Dabbs, Ilhan A. Aksay, Sol M. Gruner
  • Patent number: 6551559
    Abstract: The present invention relates to a polarization cell which is coated with glass deposited from a sol-gel used for hyperpolarizing noble gases. The invention also includes a method for hyperpolarizing noble gases utilizing the polarization cell coated with glass deposited from a sol-gel. These polarization cells can also be incorporated into containers used for storage and transport of the hyperpolarized noble gases.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: April 22, 2003
    Assignee: The Trustees of Princeton University
    Inventors: Gordon D. Cates, Jr., Ilhan A. Aksay, William Happer, Ming Feng Hsu, Daniel Martin Dabbs
  • Patent number: 6547940
    Abstract: A process directed to preparing surfactant-polycrystalline inorganic nanostructured materials having designed microscopic patterns. The process includes forming a polycrystalline inorganic substrate having a flat surface and placing in contact with the flat surface of the substrate a surface having a predetermined microscopic pattern. An acidified aqueous reacting solution is then placed in contact with an edge of the surface having the predetermined microscopic pattern. The solution wicks into the microscopic pattern by capillary action. The reacting solution has an effective amount of a silica source and an effective amount of a surfactant to produce a mesoscopic silica film upon contact of the reacting solution with the flat surface of the polycrystalline inorganic substrate and absorption of the surfactant into the surface. Subsequently an electric field is applied tangentially directed to the surface within the microscopic pattern.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: April 15, 2003
    Assignee: The Trustees of Princeton University
    Inventors: Ilhan A. Aksay, Mathias Trau, Srinivas Manne, Itaru Honma, George Whitesides
  • Patent number: 6533903
    Abstract: A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: March 18, 2003
    Assignee: Princeton University
    Inventors: Ryan C. Hayward, Hak F. Poon, Yi Xiao, Dudley A. Saville, Ilhan A. Aksay
  • Publication number: 20020117083
    Abstract: A plastically deformable aqueous ceramic slurry wherein the ceramic particles have on the surfaces thereof a closely-packed anionic surfactant bilayer or an anionic/nonionic surfactant bilayer. Optionally, such ceramic particles have on the surfaces thereof a closely-packed cationic surfactant bilayer or a cationic/nonionic surfactant bilayer.
    Type: Application
    Filed: April 24, 2002
    Publication date: August 29, 2002
    Inventors: Ilhan A. Aksay, Hsieng-Liang Ker
  • Patent number: 6329741
    Abstract: A modification of the traditional unimorph flextensional actuator is provided by replacing the metal shim with an electrically conducting oxide. Comprised of lead zirconate titanate and zinc oxide that is co-sintered, the laminate composite obtains large axial displacements while maintaining moderate axial loads. The varistor properties of zinc oxide dictate that the conductance increases several orders of magnitude when a critical electric field is applied. The versatility of the processing over other actuator system facilitates miniaturization, while maintaining comparable performance characteristics. Functional gradients in the material properties are created in the green body by layering thin tape cast sheets. The unique PZT-zinc oxide composite not only controls the piezoelectric gradient, but permits control of the sintering kinetics leading to the processing of either flat or highly domed structures.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: December 11, 2001
    Assignee: The Trustees of Princeton University
    Inventors: James S. Vartuli, David L. Milius, Xiaoping Li, Wei H. Shih, Wan Y. Shih, Robert K. Prud'homme, Ilhan A. Aksay
  • Publication number: 20010035340
    Abstract: A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.
    Type: Application
    Filed: April 26, 2001
    Publication date: November 1, 2001
    Inventors: Ryan C. Hayward, Hak F. Poon, Yi Xiao, Dudley Saville, Ilhan Aksay
  • Publication number: 20010023024
    Abstract: A process directed to preparing surfactant-polycrystalline inorganic nanostructured materials having designed microscopic patterns. The process includes forming a polycrystalline inorganic substrate having a flat surface and placing in contact with the flat surface of the substrate a surface having a predetermined microscopic pattern. An acidified aqueous reacting solution is then placed in contact with an edge of the surface having the predetermined microscopic pattern. The solution wicks into the microscopic pattern by capillary action. The reacting solution has an effective amount of a silica source and an effective amount of a surfactant to produce a mesoscopic silica film upon contact of the reacting solution with the flat surface of the polycrystalline inorganic substrate and absorption of the surfactant into the surface. Subsequently an electric field is applied tangentially directed to the surface within the microscopic pattern.
    Type: Application
    Filed: May 7, 2001
    Publication date: September 20, 2001
    Inventors: Ilhan A. Aksay, Mathias Trau, Srinivas Manne, Itaru Honma, George Whitesides
  • Patent number: 6283997
    Abstract: A process for producing a ceramic composite having a porous network. The process includes providing a photocurable ceramic dispersion. The dispersion consists of a photocurable polymer and a ceramic composition. The surface of the dispersion is scanned with a laser to cure the photocurable polymer to produce a photocured polymer/ceramic composition. The photocured composition useful as a polymer/ceramic composite, or the polymer phase can be removed by heating to a first temperature that is sufficient to burn out the photocured polymer. It is then heated to a second temperature that is higher than the first temperature and is sufficient to sinter the ceramic composition to produce a purely ceramic composition having a porous network. Preferably and more specifically, the process uses a stereolithographic technique for laser scanning. The process can form a high quality orthopedic implant that dimensionally matches the bone structure of a patient.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: September 4, 2001
    Assignees: The Trustees of Princeton University, Ethicon, Inc.
    Inventors: Rajeev Garg, Robert K. Prud'Homme, Ilhan A. Aksay, Victor F. Janas, Kevor S. TenHuisen, Shawn T. Huxel
  • Patent number: 6228248
    Abstract: A process directed to preparing surfactant-polycrystalline inorganic nanostructured materials having designed microscopic patterns. The process includes forming a polycrystalline inorganic substrate having a flat surface and placing in contact with the flat surface of the substrate a surface having a predetermined microscopic pattern. An acidified aqueous reacting solution is then placed in contact with an edge of the surface having the predetermined microscopic pattern. The solution wicks into the microscopic pattern by capillary action. The reacting solution has an effective amount of a silica source and an effective amount of a surfactant to produce a mesoscopic silica film upon contact of the reacting solution with the flat surface of the polycrystalline inorganic substrate and absorption of the surfactant into the surface. Subsequently an electric field is applied tangentially directed to the surface within the microscopic pattern.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: May 8, 2001
    Assignee: The Trustees of Princeton University
    Inventors: Ilhan A. Aksay, Mathias Trau, Srinivas Manne, Itaru Honma, George Whitesides
  • Patent number: 6046139
    Abstract: We make large (in excess of 2 cm in diameter), single crystal YBa.sub.2 Cu.sub.3 O.sub.7-x [123 YBCO] crystals, where x.ltoreq.0.6, in a seventeen step process or some variant thereof from finely ground and well mixed 123 YBCO and 211 YBCO powders with a small amount of Pt by controlling the rate of cooling from within a compact of the powders using a temperature gradient in the radial and axial planes (independently) of about 1-1.degree. C./inch diameter of compact to nucleate the crystal growth. We promote crystal growth as well using a samarium oxide seed crystal, preferably SmBa.sub.2 Cu.sub.3 O.sub.(7-y), where y.ltoreq.1.6. After nucleation we cool the compact slowly at a rate from about 0.1-1.degree. C./hr to promote the single crystal development.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: April 4, 2000
    Assignee: The Boeing Company
    Inventors: Kay Y. Blohowiak, Darryl F. Garrigus, Thomas S. Luhman, Kevin E. McCrary, Michael Strasik, Ilhan Aksay, Fatih Dogan, William C. Hicks, Corrie B. Martin
  • Patent number: 6033547
    Abstract: A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this "lateral attraction" between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex "designed" structures.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: March 7, 2000
    Assignee: The Trustees of Princeton University
    Inventors: Mathias Trau, Ilhan A. Aksay, Dudley A. Saville
  • Patent number: 6004444
    Abstract: A process directed to preparing surfactant-polycrystalline inorganic nanostructured materials having designed microscopic patterns. The process includes forming a polycrystalline inorganic substrate having a flat surface and placing in contact with the flat surface of the substrate a surface having a predetermined microscopic pattern. An acidified aqueous reacting solution is then placed in contact with an edge of the surface having the predetermined microscopic pattern. The solution wicks into the microscopic pattern by capillary action. The reacting solution has an effective amount of a silica source and an effective amount of a surfactant to produce a mesoscopic silica film upon contact of the reacting solution with the flat surface of the polycrystalline inorganic substrate and absorption of the surfactant into the surface. Subsequently an electric field is applied tangentially directed to the surface within the microscopic pattern.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: December 21, 1999
    Assignee: The Trustees of Princeton University
    Inventors: Ilhan A. Aksay, Mathias Trau, Srinivas Manne, Itaru Honma, George Whitesides
  • Patent number: 5869432
    Abstract: A bulk high temperature superconductor single crystal having the formula MBa.sub.2 Cu.sub.3 O.sub.7-x wherein M is selected from the group consisting of Y, Sm, Eu, Gd, Dy, Ho, Er, and Yb; and, x has a number value from about 0.1 to about 1.0; are produced by a novel process incorporating: i) starting powders produced by combustion spray pyrolysis, ii) a novel setter powder, and/or iii) a monitored isothermal growth process.
    Type: Grant
    Filed: December 26, 1996
    Date of Patent: February 9, 1999
    Assignee: The Trustees of Princeton University
    Inventors: Ilhan A. Aksay, Edward P. Vicenzi, David L. Milius, John S. Lettow
  • Patent number: 5855753
    Abstract: A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this "lateral attraction" between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex "designed" structures.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: January 5, 1999
    Assignee: The Trustees of Princeton University
    Inventors: Mathias Trau, Ilhan A. Aksay, Dudley A. Saville
  • Patent number: 5624604
    Abstract: A method for dispersing and reducing the rate of dissolution and/or hydration of colloidal ceramic suspensions is described. The method comprises adding to a ceramic suspension a non-polymeric hydroxylated organic compound. The organic compound has at least one hydroxyl group, preferably at least two hydroxyl groups. The organic compound also includes a functional group selected from the group consisting of a carboxyl, a carboxylate, a sulfonic acid, a sulfonate, a phosphoric acid, a phosphate, an amine, and a quaternary ammonium salt. The ceramic suspension typically comprises a colloidal suspension of a metal oxide, wherein the metal of the metal oxide is an alkali metal, alkaline-earth metal or a rare-earth metal, but preferably is magnesium, calcium or a rare-earth metal. The non-polymeric organic compound is added to the suspension in an amount effective to substantially disperse and reduce the rate of dissolution of the ceramic particles, such as from about 0.01 weight percent to about 5.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: April 29, 1997
    Inventors: Mehrdad Yasrebi, William W. Kemp, David H. Sturgis, Ilhan A. Aksay, Hamazo Nakagawa
  • Patent number: 5503771
    Abstract: A method for producing a highly loaded, aqueous suspension having a pourable viscosity and containing from 20 to 50 volume percent colloidal ceramic or metal particles. A biologically produced polymer dispersant having a high density of carboxyl functional groups and an average molecular weight of at least 1,000 is solubilized in water in a quantity of less than 1.0 percent dry weight basis of particles. The ceramic or metal particles are then introduced to the solution, and agitated to form a substantially nonagglomerated suspension. The polymer dispersant may be produced by a bacterium grown in situ with the particles. A biologically produced polymer gelling agent that is miscible with the polymer dispersant may be admixed into the suspension, which is then maintained in a nongelled state while being supplied to a mold. The suspension is then exposed to a gel-triggering condition to form a gelled, sinterable article.
    Type: Grant
    Filed: January 27, 1994
    Date of Patent: April 2, 1996
    Assignee: Washington Technology Center
    Inventors: James T. Staley, Ilhan A. Aksay, Gordon L. Graff, Nancy B. Pellerin, Tao Ren