Patents by Inventor Ilya Daniel Rosenberg

Ilya Daniel Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12197676
    Abstract: The disclosed subject matter provides structures, devices, and methods for environmental compensation of temperature and humidity impacts on resistive force or touch sensor devices. Accordingly, various disclosed embodiments can be configured to determine sheet resistance of a device comprising force-sensing membrane and to apply an environmental compensation factor based on the sheet resistance. Further disclosed embodiments are directed to devices, systems and methods associated with disclosed environmental compensating elements and methods related thereto.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: January 14, 2025
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Stephanie Jeanne Oberg, Scott Gregory Isaacson, Elliott Chen Wu, Darren Lochun, Alexander Meagher Grau, Jacob Terracina
  • Publication number: 20240411375
    Abstract: One variation of a keyboard system includes: a substrate including an array of inductors; a tactile layer arranged over the substrate defining an array of key locations over the array of inductors; an array of magnetic elements, each arranged within the tactile layer at a key location configured to inductively couple to an adjacent inductor and configured to move relative to the adjacent inductor responsive to application of a force on the tactile layer at the key location; and a controller configured to read electrical values from the inductors. In response to detecting a change in electrical value at a first inductor, the controller also configured to: register a first keystroke of a first key type associated with a first key location defined over the first inductor; and drive an oscillating voltage across the first inductor to oscillate the tactile layer over the substrate during a haptic feedback cycle.
    Type: Application
    Filed: August 22, 2024
    Publication date: December 12, 2024
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 12164690
    Abstract: One variation of a system for a touch sensor includes: a substrate; a cover layer; a spacer element; a second electrode; and a controller. The substrate includes: a support location arranged on the substrate; and a first electrode arranged proximal the support location. The cover layer defines a touch sensor surface arranged over the substrate. The spacer element: is coupled to the substrate at the support location; and yields to displacement of the substrate downward responsive to forces applied to the touch sensor surface. The second electrode: is arranged opposite the first electrode to define a nominal gap; and is configured to effect electrical values of the first electrode responsive to displacement of the substrate. The controller is configured to: read a set of electrical values from the first sense electrode; and interpret a first force magnitude of a first touch input based on the set of electrical values.
    Type: Grant
    Filed: June 8, 2023
    Date of Patent: December 10, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Shuangming Li, Ninad Sathe, Darren Lochun
  • Publication number: 20240402816
    Abstract: One variation of a method for modifying haptic feedback response includes, during a set-up period: at a calibration system, applying a target selection force, to a target location on a surface of a touch sensor; at the touch sensor, triggering vibration cycles across haptic actuators to oscillate the touch sensor surface; capturing a haptic waveform representing oscillations at the first target location on the surface during the vibration cycles; interpreting a vibration cycle for the haptic actuators corresponding to a target haptic intensity at the target location based on the haptic waveform. The method also includes, during a deployment period, following the set-up period: detecting a force magnitude for a touch input applied proximal the target location on the surface; and in response to the force magnitude exceeding the target selection force, triggering the vibration cycle at the haptic actuators to oscillate the surface at the target haptic intensity.
    Type: Application
    Filed: August 8, 2024
    Publication date: December 5, 2024
    Inventors: Ninad Sathe, Vijay Rajanna, Ilya Daniel Rosenberg
  • Publication number: 20240353955
    Abstract: One variation of a system for detecting inputs at a computing device includes: a substrate including a top layer, a bottom layer defining an array of support locations, and electrode pairs proximal the support locations; a touch sensor surface arranged over the top layer of the substrate; a set of spacers, each arranged over an electrode pair at a support location on the bottom layer of the substrate and including a force-sensitive material exhibiting variations in local bulk resistance responsive to variations in applied force; an array of spring elements coupled to the set of spacers, configured to support the substrate on a chassis, and configured to yield to displacement of the substrate downward toward the chassis responsive to forces applied to the touch sensor surface; and a controller configured to interpret forces of inputs on the touch sensor surface based on resistance values of the electrode pairs.
    Type: Application
    Filed: June 27, 2024
    Publication date: October 24, 2024
    Inventors: Ilya Daniel Rosenberg, Ninad Sathe, Eric Rosales
  • Patent number: 12118154
    Abstract: One variation of a system for a human-computer interface includes: a substrate; a post; and a controller. The substrate includes: a first region including a drive electrode concentric with a normal axis; and a second region arranged opposite the first region. The second region includes a set of sense electrodes arranged: radially about the normal axis; along a first axis orthogonal to the normal axis; and along a second axis orthogonal to the normal axis and the first axis. The post is arranged over the first region. The controller is configured to: read a set of electrical values from the set of sense electrodes; and based on the set of electrical values, interpret a first displacement of the drive electrode relative the set of sense electrodes along the first axis, and interpret a second displacement of the drive electrode relative to the set of sense electrodes along the second axis.
    Type: Grant
    Filed: August 11, 2023
    Date of Patent: October 15, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Darren Lochun, Ninad Sathe
  • Publication number: 20240329740
    Abstract: Simulation of a physical interface utilizing touch tracking, force sensing, and haptic feedback is presented herein. A system tracks, via a touch sensing device of a tactile sensor of the system, a movement of a finger across the tactile sensor; in response to a location of the movement being determined to correspond to an interactive surface of the tactile sensor, the system generates, at the location, a first haptic feedback representing a defined type of simulated physical interface; based on the defined type of simulated physical interface, the system detects a force that has been applied to the tactile sensor; and in response to the force being determined to satisfy a defined force condition representing that an action is to be initiated, the system generates, via the interactive surface, a second haptic feedback representing that the action has been initiated by the system.
    Type: Application
    Filed: March 28, 2023
    Publication date: October 3, 2024
    Inventors: Vijay Rajanna, Darren Lochun, Ilya Daniel Rosenberg, Tomer Moscovich
  • Publication number: 20240319794
    Abstract: One variation of a system for interfacing a computer system and a user includes: a touch sensor defining a touch sensor surface and extending over an array of sense electrode and drive electrode pairs; a vibrator coupled to the touch sensor surface; and a controller configured to: detect application of an input onto the touch sensor surface and a force magnitude of the first input at a first time; execute a down-click cycle in response to the force magnitude exceeding a threshold magnitude by driving the vibrator to oscillate the touch sensor surface; map a location of the input on the touch sensor surface to a key of a keyboard represented by the touch sensor surface; and output a touch image representing the key and the force magnitude of the input on the touch sensor surface at approximately the first time.
    Type: Application
    Filed: March 29, 2024
    Publication date: September 26, 2024
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Publication number: 20240319822
    Abstract: A touch assembly includes: an outer tip; an inner tip; a circuit board; a vibration sensor; and a spring element. The outer tip includes a distal end defining an outer contact surface. The inner tip: is arranged concentrically within the outer tip; extends from the distal end of the outer tip; and defines an inner contact surface. The circuit board is arranged over a proximal end of the outer tip. The spring element: is interposed between the circuit board and the inner tip; couples the inner tip to a reference potential; and is configured to, during a haptic feedback cycle at a touch sensor in response to application of the inner tip toward the touch sensor, yield to locate the inner contact surface coplanar with the outer contact surface. The vibration sensor is arranged on the circuit board and configured to output vibration signals during the haptic feedback cycle.
    Type: Application
    Filed: March 25, 2024
    Publication date: September 26, 2024
    Inventors: Ninad Sathe, Ilya Daniel Rosenberg, Kirsten Etzold, Tomer Moscovich, Darren Lochun, Jacob Terracina, Yasukazu Nakatani
  • Publication number: 20240310919
    Abstract: One variation of a system for detecting and responding to touch inputs with haptic feedback includes: a magnetic element rigidly coupled to a chassis; a substrate; a touch sensor interposed between the substrate and a touch sensor surface; an inductor coupled to the substrate below the touch sensor surface and configured to magnetically couple to the magnetic element; a coupler coupling the substrate to the chassis, compliant within a vibration plane approximately parallel to the touch sensor surface, and locating the inductor approximately over the magnetic element; and a controller configured to intermittently polarize the inductor responsive to detection of a touch input on the touch sensor surface to oscillate the substrate in the vibration plane relative to the chassis.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventors: Ilya Daniel Rosenberg, Brogan Miller, John Aaron Zarraga, James Junus
  • Patent number: 12093458
    Abstract: One variation of a keyboard system includes: a substrate including an array of inductors; a tactile layer arranged over the substrate defining an array of key locations over the array of inductors; an array of magnetic elements, each arranged within the tactile layer at a key location configured to inductively couple to an adjacent inductor and configured to move relative to the adjacent inductor responsive to application of a force on the tactile layer at the key location; and a controller configured to read electrical values from the inductors. In response to detecting a change in electrical value at a first inductor, the controller also configured to: register a first keystroke of a first key type associated with a first key location defined over the first inductor; and drive an oscillating voltage across the first inductor to oscillate the tactile layer over the substrate during a haptic feedback cycle.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: September 17, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20240295928
    Abstract: One variation of a system includes a substrate including: a first layer including a first spiral trace coiled in a first direction; a second layer arranged below the first layer and including a second spiral trace coiled in a second direction and cooperating with the first spiral trace to form a multi-layer inductor; and a sensor layer including an array of drive and sense electrode pairs. The system also includes: a cover layer arranged over the substrate and defining a touch sensor surface; and a first magnetic element arranged below the substrate and defining a first polarity facing the multi-layer inductor. The system further includes a controller configured to drive an oscillating voltage across the multi-layer inductor to oscillate the substrate in response to detecting an input on the touch sensor surface based on electrical values from the set of drive and sense electrode pairs.
    Type: Application
    Filed: March 8, 2024
    Publication date: September 5, 2024
    Inventors: James Junus, Ninad Sathe, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Eric Rosales
  • Patent number: 12079392
    Abstract: One variation of a method for modifying haptic feedback response includes, during a set-up period: at a calibration system, applying a target selection force, to a target location on a surface of a touch sensor; at the touch sensor, triggering vibration cycles across haptic actuators to oscillate the touch sensor surface; capturing a haptic waveform representing oscillations at the first target location on the surface during the vibration cycles; interpreting a vibration cycle for the haptic actuators corresponding to a target haptic intensity at the target location based on the haptic waveform. The method also includes, during a deployment period, following the set-up period: detecting a force magnitude for a touch input applied proximal the target location on the surface; and in response to the force magnitude exceeding the target selection force, triggering the vibration cycle at the haptic actuators to oscillate the surface at the target haptic intensity.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: September 3, 2024
    Assignee: Sensel, Inc.
    Inventors: Ninad Sathe, Vijay Rajanna, Ilya Daniel Rosenberg
  • Publication number: 20240288962
    Abstract: A system includes: a substrate; a first electrode proximal a center on the substrate; and a second electrode interposed between the first electrode and an edge on the substrate. The system also includes a first coupling region: arranged on a first planar region of the baseplate; offset from the first electrode by a first height; and coupling to the first electrode to yield a first electrical value at the first electrode responsive to application of a force magnitude proximal the center. The system further includes a second coupling region: arranged on a second planar region, offset above the first planar region, of the baseplate; offset from the second electrode by a second height, less than the first nominal gap height; and coupling to the second electrode to yield a second electrical value, approximating the first electrical value, at the second electrode responsive to application of the force magnitude.
    Type: Application
    Filed: March 15, 2024
    Publication date: August 29, 2024
    Inventors: Ninad Sathe, Ilya Daniel Rosenberg, Kirsten Etzold
  • Publication number: 20240281083
    Abstract: A system includes: a substrate including an edge supported by a chassis; a first electrode spanning a first area of the substrate and arranged proximal a center of the substrate; and a second electrode spanning a second area, greater than the first area, on the substrate and interposed between the first electrode and the edge of the substrate. The system further includes a first coupling region: facing the first electrode; and electrically coupling to the first electrode to yield a first electrical value at the first electrode responsive to application of a first force magnitude proximal the center of the substrate. The system also includes a second coupling region: facing the second electrode; and electrically coupling to the second electrode to yield a second electrical value, approximating the first electrical value, at the second electrode responsive to application of the first force magnitude proximal the center of the substrate.
    Type: Application
    Filed: March 15, 2024
    Publication date: August 22, 2024
    Inventors: Jacob Terracina, Ilya Daniel Rosenberg, Shuangming Li, Darren Lochun, Tomer Moscovich
  • Patent number: 12056322
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: August 6, 2024
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 12050748
    Abstract: One variation of a system for detecting inputs at a computing device includes: a substrate including a top layer, a bottom layer defining an array of support locations, and electrode pairs proximal the support locations; a touch sensor surface arranged over the top layer of the substrate; a set of spacers, each arranged over an electrode pair at a support location on the bottom layer of the substrate and including a force-sensitive material exhibiting variations in local bulk resistance responsive to variations in applied force; an array of spring elements coupled to the set of spacers, configured to support the substrate on a chassis, and configured to yield to displacement of the substrate downward toward the chassis responsive to forces applied to the touch sensor surface; and a controller configured to interpret forces of inputs on the touch sensor surface based on resistance values of the electrode pairs.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: July 30, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Ninad Sathe, Eric Rosales
  • Patent number: 12039132
    Abstract: One variation of a system for a touch sensor includes: a substrate; a baseplate; and spacer elements. The substrate defines support locations. The baseplate spans a bottom layer of the substrate and defines spring elements: aligned to the support locations of the substrate; and configured to yield to displacement of the substrate toward the baseplate responsive to forces applied over the substrate. The spacer elements: are interposed between the support locations and the spring elements; and are configured to compress responsive to forces applied over the substrate. Each spacer element, in the spacer elements, includes: an elastomer element; a first adhesive layer; and a second adhesive layer. The first adhesive layer: is arranged over the elastomer element; and coupled to the bottom substrate layer at a support location. The second adhesive layer: is arranged below the elastomer element; and coupled to the baseplate at a spring element.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: July 16, 2024
    Assignee: Sensel, Inc.
    Inventors: Ping Liu, Sophia Chau, Ninad Sathe, Darren Lochun, Ilya Daniel Rosenberg
  • Patent number: 12032745
    Abstract: One variation of a system for detecting and responding to touch inputs with haptic feedback includes: a magnetic element rigidly coupled to a chassis; a substrate; a touch sensor interposed between the substrate and a touch sensor surface; an inductor coupled to the substrate below the touch sensor surface and configured to magnetically couple to the magnetic element; a coupler coupling the substrate to the chassis, compliant within a vibration plane approximately parallel to the touch sensor surface, and locating the inductor approximately over the magnetic element; and a controller configured to intermittently polarize the inductor responsive to detection of a touch input on the touch sensor surface to oscillate the substrate in the vibration plane relative to the chassis.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: July 9, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Brogan Miller, John Aaron Zarraga, James Junus
  • Patent number: 12012227
    Abstract: One variation of a tram system includes: a chassis; a latch configured to selectively engage a latch receiver mounted to an aircraft; an alignment feature adjacent the latch and configured to engage an alignment receiver mounted to the aircraft and to communicate acceleration and braking forces from the chassis into the aircraft; an optical sensor facing upwardly from the chassis; a drivetrain configured to accelerate and decelerate the chassis along a runway; and a controller configured to detect an optical fiducial arranged on the aircraft in optical images recorded by the optical sensor adjust a speed of the drivetrain to longitudinally align the alignment feature with the alignment receiver based on positions of the optical fiducial detected in the optical images, trigger the latch to engage the latch receiver once the aircraft has descended onto the chassis, and trigger the drivetrain to actively decelerate the chassis during a landing routine.
    Type: Grant
    Filed: June 5, 2023
    Date of Patent: June 18, 2024
    Inventor: Ilya Daniel Rosenberg