Patents by Inventor Ilya Grodnensky
Ilya Grodnensky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9499673Abstract: Method for producing a nanocomposite material reinforced by unidirectionally oriented pre-dispersed alumina nanofibers. The process is suited for industrial-scale production of the nanocomposite materials. The nanocomposite production process involves, synthesis of unidirectionally oriented pre-dispersed alumina nanofibers, casting a mat of pre-dispersed nanofibers with a predetermined orientation in the atmosphere of air or other gas(es) by saturating the nanofibers with liquid polymer matrix. Polymer matrix may include thermosets or/and thermoplastics. The material forming the polymer matrix may be heated to its melting point temperature to transform it to liquid phase. After saturation, the polymer matrix is hardened by lowering its temperature or by means of exposing the polymer matrix to UV radiation, electron beam and/or chemical hardeners. The nanomaterial is composed of polymer composite with homogeneously dispersed uniformly oriented reinforcing nanofibers.Type: GrantFiled: July 28, 2013Date of Patent: November 22, 2016Assignee: ANF Technology LimitedInventor: Ilya Grodnensky
-
Publication number: 20160114500Abstract: Carbon-fiber-reinforced polymers are composite materials. In this case the composite consists of two parts; a matrix and a reinforcement. In CFRP the reinforcement is carbon fiber, which provides the strength. The matrix is usually a polymer resin, such as epoxy, to bind the reinforcements together. Because CFRP consists of two distinct elements, the material properties depend on these two elements. In accordance with one aspect of the invention, there is provided a method and apparatus for producing carbon-fiber-reinforced polymers, wherein the polymer resin used in their manufacture is additionally reinforced by unidirectionally oriented pre-dispersed alumina nanofibers. The aforesaid process is well suited for industrial-scale production of the carbon-fiber-reinforced polymers.Type: ApplicationFiled: October 23, 2014Publication date: April 28, 2016Inventor: Ilya Grodnensky
-
Patent number: 9303137Abstract: A method for producing a nanocomposite material reinforced by alumina Al2O3 nanofibers involving synthesizing the alumina Al2O3 nanofibers directly from a melt comprising molten metallic aluminum, the method comprising a controlled liquid phase oxidation of the melt, wherein the synthesized alumina Al2O3 nanofibers have a diameter between 3 and 45 nm and length of more than 100 nm and combining the synthesized alumina Al2O3 nanofibers with a polymer matrix to produce the nanocomposite material reinforced by the alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers may be monocrystalline alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers and the molecules of the polymer may be aligned.Type: GrantFiled: March 2, 2013Date of Patent: April 5, 2016Assignee: ANF Technology LimitedInventor: Ilya Grodnensky
-
Publication number: 20150246850Abstract: A method and apparatus for producing a cement-based material, such as concrete, mortar and/or grout reinforced by unidirectionally oriented pre-dispersed alumina nanofibers, as well as the resulting material. The aforesaid process is well suited for industrial-scale production of the cement-based composite materials. The resulting nanomaterial is composed of the cement base, various additives and homogeneously dispersed uniformly oriented reinforcing alumina nanofibers. In various embodiments, the aforesaid composite material may be manufactured by means of water-dispersion of the alumina nanofibers and combining the resulting dispersed nanofiber solution with the cement base and, if applicable, one or more additives. Additionally or alternatively, the alumina nanofibers with or without the cement base may be subject to mechanical or/and ultrasound coarse dispersing.Type: ApplicationFiled: February 28, 2014Publication date: September 3, 2015Inventor: Ilya Grodnensky
-
Publication number: 20150031816Abstract: Method for producing a nanocomposite material reinforced by unidirectionally oriented pre-dispersed alumina nanofibers. The process is suited for industrial-scale production of the nanocomposite materials. The nanocomposite production process involves, synthesis of unidirectionally oriented pre-dispersed alumina nanofibers, casting a mat of pre-dispersed nanofibers with a predetermined orientation in the atmosphere of air or other gas(es) by saturating the nanofibers with liquid polymer matrix. Polymer matrix may include thermosets or/and thermoplastics. The material forming the polymer matrix may be heated to its melting point temperature to transform it to liquid phase. After saturation, the polymer matrix is hardened by lowering its temperature or by means of exposing the polymer matrix to UV radiation, electron beam and/or chemical hardeners. The nanomaterial is composed of polymer composite with homogeneously dispersed uniformly oriented reinforcing nanofibers.Type: ApplicationFiled: July 28, 2013Publication date: January 29, 2015Applicant: ANF Technology LImitedInventor: Ilya Grodnensky
-
Publication number: 20140249262Abstract: A method for producing a nanocoating reinforced by alumina Al2O3 nanofibers involving synthesizing the alumina Al2O3 nanofibers directly from a melt comprising molten metallic aluminum, the method comprising a controlled liquid phase oxidation of the melt, wherein the synthesized alumina Al2O3 nanofibers have a diameter between 3 and 45 nm and length of more than 100 nm and combining the synthesized alumina Al2O3 nanofibers with a polymer matrix to produce the nanocoating material reinforced by the alumina Al2O3 nanofibers. The nanocoating is then applied onto a surface of a substrate using any known coating technique, such as by means of a roll coater. The alumina Al2O3 nanofibers may be monocrystalline alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers and the molecules of the polymer may be aligned.Type: ApplicationFiled: March 3, 2013Publication date: September 4, 2014Applicant: ANF TECHNOLOGY LIMITEDInventor: Ilya Grodnensky
-
Publication number: 20140249261Abstract: A method for producing a nanocomposite material reinforced by alumina Al2O3 nanofibers involving synthesizing the alumina Al2O3 nanofibers directly from a melt comprising molten metallic aluminum, the method comprising a controlled liquid phase oxidation of the melt, wherein the synthesized alumina Al2O3 nanofibers have a diameter between 3 and 45 nm and length of more than 100 nm and combining the synthesized alumina Al2O3 nanofibers with a polymer matrix to produce the nanocomposite material reinforced by the alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers may be monocrystalline alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers and the molecules of the polymer may be aligned.Type: ApplicationFiled: March 2, 2013Publication date: September 4, 2014Applicant: ANF TECHNOLOGY LIMITEDInventor: Ilya Grodnensky
-
Patent number: 8809436Abstract: A method for producing a nanocoating reinforced by alumina Al2O3 nanofibers involving synthesizing the alumina Al2O3 nanofibers directly from a melt comprising molten metallic aluminum, the method comprising a controlled liquid phase oxidation of the melt, wherein the synthesized alumina Al2O3 nanofibers have a diameter between 3 and 45 nm and length of more than 100 nm and combining the synthesized alumina Al2O3 nanofibers with a polymer matrix to produce the nanocoating material reinforced by the alumina Al2O3 nanofibers. The nanocoating is then applied onto a surface of a substrate using any known coating technique, such as by means of a roll coater. The alumina Al2O3 nanofibers may be monocrystalline alumina Al2O3 nanofibers. The alumina Al2O3 nanofibers and the molecules of the polymer may be aligned.Type: GrantFiled: March 3, 2013Date of Patent: August 19, 2014Assignee: ANF Technology LimitedInventor: Ilya Grodnensky
-
Patent number: 8049903Abstract: An optical metrology method is disclosed for evaluating the uniformity of characteristics within a semiconductor region having repeating features such a memory die. The method includes obtaining measurements with a probe laser beam having a spot size on the order of micron. These measurements are compared to calibration information obtained from calibration measurements. The calibration information is derived by measuring calibration samples with the probe laser beam and at least one other technology having added information content. In the preferred embodiment, the other technology includes at least one of spectroscopic reflectometry or spectroscopic ellipsometry.Type: GrantFiled: March 28, 2011Date of Patent: November 1, 2011Assignee: KLA-Tencor CorporationInventors: Jon Opsal, Ilya Grodnensky, Heath Pois
-
Publication number: 20110205554Abstract: An optical metrology method is disclosed for evaluating the uniformity of characteristics within a semiconductor region having repeating features such a memory die. The method includes obtaining measurements with a probe laser beam having a spot size on the order of micron. These measurements are compared to calibration information obtained from calibration measurements. The calibration information is derived by measuring calibration samples with the probe laser beam and at least one other technology having added information content. In the preferred embodiment, the other technology includes at least one of spectroscopic reflectometry or spectroscopic ellipsometry.Type: ApplicationFiled: March 28, 2011Publication date: August 25, 2011Applicant: KLA-Tencor CorporationInventors: Jon OPSAL, Ilya Grodnensky, Heath Pois
-
Patent number: 7933026Abstract: An optical metrology method is disclosed for evaluating the uniformity of characteristics within a semiconductor region having repeating features such a memory die. The method includes obtaining measurements with a probe laser beam having a spot size on the order of micron. These measurements are compared to calibration information obtained from calibration measurements. The calibration information is derived by measuring calibration samples with the probe laser beam and at least one other technology having added information content. In the preferred embodiment, the other technology includes at least one of spectroscopic reflectometry or spectroscopic ellipsometry.Type: GrantFiled: June 18, 2009Date of Patent: April 26, 2011Assignee: KLA-Tencor CorporationInventors: Jon Opsal, Ilya Grodnensky, Heath Pois
-
Publication number: 20090259605Abstract: An optical metrology method is disclosed for evaluating the uniformity of characteristics within a semiconductor region having repeating features such a memory die. The method includes obtaining measurements with a probe laser beam having a spot size on the order of micron. These measurements are compared to calibration information obtained from calibration measurements. The calibration information is derived by measuring calibration samples with the probe laser beam and at least one other technology having added information content. In the preferred embodiment, the other technology includes at least one of spectroscopic reflectometry or spectroscopic ellipsometry.Type: ApplicationFiled: June 18, 2009Publication date: October 15, 2009Applicant: KLA Tencor CorporationInventors: Jon Opsal, Ilya Grodnensky, Heath Pois
-
Patent number: 7567351Abstract: An optical metrology method is disclosed for evaluating the uniformity of characteristics within a semiconductor region having repeating features such a memory die. The method includes obtaining measurements with a probe laser beam having a spot size on the order of micron. These measurements are compared to calibration information obtained from calibration measurements. The calibration information is derived by measuring calibration samples with the probe laser beam and at least one other technology having added information content. In the preferred embodiment, the other technology includes at least one of spectroscopic reflectometry or spectroscopic ellipsometry.Type: GrantFiled: January 24, 2007Date of Patent: July 28, 2009Assignee: KLA-Tencor CorporationInventors: Jon Opsal, Ilya Grodnensky, Heath Pois
-
Publication number: 20070201017Abstract: An optical metrology method is disclosed for evaluating the uniformity of characteristics within a semiconductor region having repeating features such a memory die. The method includes obtaining measurements with a probe laser beam having a spot size on the order of micron. These measurements are compared to calibration information obtained from calibration measurements. The calibration information is derived by measuring calibration samples with the probe laser beam and at least one other technology having added information content. In the preferred embodiment, the other technology includes at least one of spectroscopic reflectometry or spectroscopic ellipsometry.Type: ApplicationFiled: January 24, 2007Publication date: August 30, 2007Inventors: Jon Opsal, Ilya Grodnensky, Heath Pois
-
Patent number: 7245352Abstract: Systems and techniques for alignment with latent images. In one implementation, a method includes detecting a location of a latent image on a substrate, repositioning the substrate based on the detected location of the latent image, and patterning the substrate.Type: GrantFiled: July 20, 2004Date of Patent: July 17, 2007Assignee: Intel CorporationInventors: Yan Borodovsky, Ilya Grodnensky
-
Publication number: 20060017901Abstract: Systems and techniques for alignment with latent images. In one implementation, a method includes detecting a location of a latent image on a substrate, repositioning the substrate based on the detected location of the latent image, and patterning the substrate.Type: ApplicationFiled: July 20, 2004Publication date: January 26, 2006Inventors: Yan Borodovsky, Ilya Grodnensky
-
Patent number: 6956659Abstract: A test mark, as well as methods for forming and using the test mark to facilitate the measurement of the critical dimensions of etched features in semiconductor and other wafer level processing is described. The test marks may be used to characterize, calibrate and/or monitor etch performance. Test marks are defined by imaging (typically at partial exposures) overlapping, angularly offset lines in a resist that covers a layer to be etched. The lines preferably have line widths that are equal (or related) to a critical dimension of interest. After the resist is developed and otherwise processed, the layer is etched as appropriate, thereby creating the test marks. The test marks are then imaged to facilitate the determination of a geometric parameter of each mark. Most commonly, the geometric parameter determined relates to the area of the mark and/or the length of its major dimension.Type: GrantFiled: June 7, 2002Date of Patent: October 18, 2005Assignee: Nikon Precision Inc.Inventor: Ilya Grodnensky
-
Patent number: 6750952Abstract: Apparatus for performing measurement of a dimension of a test marked formed by overlapping feature imaged onto a an image forming layer of a semiconductor wafer and the calculation of the critical dimensions of the features from test mark. This is used in semiconductor processing. Also included is software configured to program a measurement device to perform the measurement and calculation of the dimension of a test mark.Type: GrantFiled: July 17, 2002Date of Patent: June 15, 2004Assignees: Nikon Precision, Inc., Nikon CorporationInventors: Ilya Grodnensky, Kyoichi Suwa, Kazuo Ushida, Eric R. Johnson
-
Patent number: 6664121Abstract: Variation in position of test marks formed of overlapping exposed features imaged by an imaging structure such as that of a lithography tool are characterized at high speed and with extremely high accuracy by imaging test marks formed in resist or on a target or wafer by a lithographic process, collecting irradiance distribution data and fitting a mathematical function to respective portions or regions of output data corresponding to a test mark of a test mark pattern such as respective maxima or minima regions or other regions of the irradiance distribution data to determine actual location and shift of position of respective patterns of test marks. Metrology fields are formed of patterns of test marks on test wafers or production wafers preferably including a critical dimension exposed at different focus distances and/or illumination conditions to capture position/aberration data for the imaging structure.Type: GrantFiled: May 20, 2002Date of Patent: December 16, 2003Assignee: Nikon Precision, Inc.Inventors: Ilya Grodnensky, Steve Slonaker
-
Publication number: 20030215965Abstract: Variation in position of test marks formed of overlapping exposed features imaged by an imaging structure such as that of a lithography tool are characterized at high speed and with extremely high accuracy by imaging test marks formed in resist or on a target or wafer by a lithographic process, collecting irradiance distribution data and fitting a mathematical function to respective portions or regions of output data corresponding to a test mark of a test mark pattern such as respective maxima or minima regions or other regions of the irradiance distribution data to determine actual location and shift of position of respective patterns of test marks. Metrology fields are formed of patterns of test marks on test wafers or production wafers preferably including a critical dimension exposed at different focus distances and/or illumination conditions to capture position/aberration data for the imaging structure.Type: ApplicationFiled: May 20, 2002Publication date: November 20, 2003Inventors: Ilya Grodnensky, Steve Slonaker