Patents by Inventor Ilya Vitebskiy

Ilya Vitebskiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230131058
    Abstract: The present disclosure relates to magnetization-free Faraday rotator systems, apparatuses, and related methods. One such system comprises a Faraday rotator device comprising a magneto-optical composite material having first and second magnetic component materials in a periodic or uniform pattern in an X-Y plane, wherein the first and second magnetic component materials are magnetized along a Z-axis in opposite directions and the Faraday rotator device produces nonzero magnetic Faraday rotation for the electromagnetic wave propagating in a Z-axis direction in the absence of an external bias magnetic field.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 27, 2023
    Inventors: Andrey Chabanov, Carl Pfeiffer, Igor Anisimov, Ilya Vitebskiy
  • Patent number: 7072555
    Abstract: Systems and methods are provided that allow transmission of an electromagnetic wave in and through a periodic multilayered photonic device. The photonic device preferably is a periodic stack of plane-parallel layers with at least one them displaying dielectric anisotropy with a principle anisotropic axis forming an oblique angle with the normal to the layers. The wave obliquely incident on the surface of the device can be almost completely converted into an axially frozen mode characterized by a significantly increased amplitude, decreased group velocity normal to the incident surface and increased energy flux substantially tangential to the incident surface. The photonic device can be used in numerous applications over a wide range of frequencies up to and including the ultraviolet spectrum. The photonic device can be further configured with a deflection device which substantially increases the operational frequency range of the photonic device.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: July 4, 2006
    Assignee: The Regents of the University of California
    Inventors: Aleksandr Figotin, Ilya Vitebskiy
  • Patent number: 6745217
    Abstract: The present invention is an apparatus and a method for generation of random numbers. The apparatus comprises an alpha-radiation source, such as Am 241, for which the decay product produces no secondary radiation with the energy equal or higher than that of the prime alpha radiation. The alpha particles emitted by the isotope and having reached the detector have a narrow energy spectrum and, hence, produce identical electrical pulses in a detector. An alpha-particle detection system is provided which includes a differential discriminator in combination with a logical selector. This combination of elements allows a positive identification of individual events of alpha-decay in the alpha-radiation source to be made and filters out any other signals produced by different radiation sources both inside and outside the apparatus. An electronic unit processes the stream of identical electric pulses into a stream of random numbers.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: June 1, 2004
    Assignees: The Regents of the University of California, The University of North Carolina at Charlotte, PDH International, Inc.
    Inventors: Aleksandr Figotin, Ilya Vitebskiy, Vadim Popovich, Gennady Stetsenko, Stanislav Molchanov, Alexander Gordon, Joseph Quinn, Nicholas Stavrakas
  • Patent number: 6701048
    Abstract: An unidirectional gyrotropic photonic crystal allows electromagnetic wave propagation in a certain direction at a certain frequency and, at the same time, impedes electromagnetic wave propagation in the opposite direction. The electromagnetic wave with impeded propagation, called the “frozen mode”, ideally has zero group velocity and does not transfer the electromagnetic energy. A unidirectional gyrotropic photonic crystal is a periodic composite, incorporating a component displaying Faraday rotation. The property of unidirectionality can be achieved in gyrotropic photonic crystals by proper choices of constituents and their space arrangement. The invention can be used to enhance the capability and performance of microwave, millimeter wave, and submillimeter wave antennas, delay lines, nonlinear and nonreciprocal elements. It can also be used in integrated microwave circuitry.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: March 2, 2004
    Assignee: The Regents of the University of California
    Inventors: Alexander Figotin, Ilya Vitebskiy
  • Publication number: 20030018674
    Abstract: The present invention is an apparatus and a method for generation of random numbers. The apparatus comprises an alpha-radiation source, such as Am 241, for which the decay product produces no secondary radiation with the energy equal or higher than that of the prime alpha radiation. The alpha particles emitted by the isotope and having reached the detector have a narrow energy spectrum and, hence, produce identical electrical pulses in a detector. An alpha-particle detection system is provided which includes a differential discriminator in combination with a logical selector. This combination of elements allows a positive identification of individual events of alpha-decay in the alpha-radiation source to be made and filters out any other signals produced by different radiation sources both inside and outside the apparatus. An electronic unit processes the stream of identical electric pulses into a stream of random numbers.
    Type: Application
    Filed: April 22, 2002
    Publication date: January 23, 2003
    Inventors: Aleksandr Figotin, Ilya Vitebskiy, Vadim Popovich, Gennady Stetsenko, Stanislav Molchanov, Alexander Gordon, Joseph Quinn, Nicholas Stavrakas
  • Publication number: 20020162988
    Abstract: An unidirectional gyrotropic photonic crystal allows electromagnetic wave propagation in a certain direction at a certain frequency and, at the same time, impedes electromagnetic wave propagation in the opposite direction. The electromagnetic wave with impeded propagation, called the “frozen mode”, ideally has zero group velocity and does not transfer the electromagnetic energy. A unidirectional gyrotropic photonic crystal is a periodic composite, incorporating a component displaying Faraday rotation. The property of unidirectionality can be achieved in gyrotropic photonic crystals by proper choices of constituents and their space arrangement. The invention can be used to enhance the capability and performance of microwave, millimeter wave, and submillimeter wave antennas, delay lines, nonlinear and nonreciprocal elements. It can also be used in integrated microwave circuitry.
    Type: Application
    Filed: April 22, 2002
    Publication date: November 7, 2002
    Inventors: Alexander Figotin, Ilya Vitebskiy