Patents by Inventor Ilyas Mohammed

Ilyas Mohammed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9218988
    Abstract: A method of making a microelectronic assembly can include molding a dielectric material around at least two conductive elements which project above a height of a substrate having a microelectronic element mounted thereon, so that remote surfaces of the conductive elements remain accessible and exposed within openings extending from an exterior surface of the molded dielectric material. The remote surfaces can be disposed at heights from said surface of said substrate which are lower or higher than a height of the exterior surface of the molded dielectric material from the substrate surface. The conductive elements can be arranged to simultaneously carry first and second different electric potentials: e.g., power, ground or signal potentials.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: December 22, 2015
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Teck-Gyu Kang, Ilyas Mohammed, Ellis Chau
  • Patent number: 9214425
    Abstract: A component can include a substrate having a front surface and a rear surface remote therefrom, an opening extending from the rear surface towards the front surface, and a conductive via extending within the opening. The substrate can have a CTE less than 10 ppm/° C. The opening can define an inner surface between the front and rear surfaces. The conductive via can include a first metal layer overlying the inner surface and a second metal region overlying the first metal layer and electrically coupled to the first metal layer. The second metal region can have a CTE greater than a CTE of the first metal layer. The conductive via can have an effective CTE across a diameter of the conductive via that is less than 80% of the CTE of the second metal region.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: December 15, 2015
    Assignee: Tessera, Inc.
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Emeka Uzoh
  • Patent number: 9214454
    Abstract: A microelectronic assembly can be made by joining first and second subassemblies by electrically conductive masses to connect electrically conductive elements on support elements of each subassembly. A patterned layer of photo-imageable material may overlie a surface of one of the support elements and have openings with cross-sectional dimensions which are constant or monotonically increasing with height from the surface of that support element, where the masses extend through the openings and have dimensions defined thereby. An encapsulation can be formed by flowing an encapsulant into a space between the joined first and second subassemblies.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 15, 2015
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Liang Wang
  • Publication number: 20150340336
    Abstract: Packaged microelectronic elements are provided which include a dielectric element, a cavity, a plurality of chip contacts and a plurality of package contacts, and microelectronic elements having a plurality of bond pads connected to the chip contacts.
    Type: Application
    Filed: July 31, 2015
    Publication date: November 26, 2015
    Inventors: Ilyas Mohammed, Belgacem Haba, Wael Zohni, Philip R. Osborn
  • Patent number: 9196581
    Abstract: A microelectronic assembly includes a first component with first conductive elements; a second component with second conductive elements; a bond metal; and an underfill layer. The posts have a height above the respective surface from which the posts project. A bond metal can be disposed between respective pairs of conductive elements, each pair including at least one of the posts and at least one of the first or second conductive elements confronting the at least one post. The bond metal can contact edges of the posts along at least one half the height of the posts. An underfill layer contacts and bonds the first and second surfaces of the first and second components. A residue of the underfill layer may be present at at least one interfacial surfaces between at least some of the posts and the bond metal or may be present within the bond metal.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: November 24, 2015
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Ilyas Mohammed, Ellis Chau, Sang Il Lee, Kishor Desai
  • Publication number: 20150334829
    Abstract: A barrier layer includes a variable-composition nickel alloy layer with a minor constituent of boron, carbon, phosphorus, and tungsten varying throughout the nickel alloy layer in a direction from the bottom surface to the top surface of the nickel alloy layer.
    Type: Application
    Filed: July 24, 2015
    Publication date: November 19, 2015
    Inventors: Cyprian UZOH, Vage OGANESIAN, Ilyas MOHAMMED, Belgacem Haba, Piyush Savalia, Craig Mitchell
  • Publication number: 20150333042
    Abstract: A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
    Type: Application
    Filed: May 29, 2015
    Publication date: November 19, 2015
    Inventors: Belgacem Haba, Ilyas Mohammed, Vage Oganesian, David Ovrutsky, Laura Wills Mirkarimi
  • Publication number: 20150333050
    Abstract: A microelectronic assembly is provided in which first and second electrically conductive pads exposed at front surfaces of first and second microelectronic elements, respectively, are juxtaposed, each of the microelectronic elements embodying active semiconductor devices. An electrically conductive element may extend within a first opening extending from a rear surface of the first microelectronic element towards the front surface thereof, within a second opening extending from the first opening towards the front surface of the first microelectronic element, and within a third opening extending through at least one of the first and second pads to contact the first and second pads. Interior surfaces of the first and second openings may extend in first and second directions relative to the front surface of the first microelectronic element, respectively, to define a substantial angle.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 19, 2015
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Publication number: 20150334831
    Abstract: A structure may include bond elements having bases joined to conductive elements at a first portion of a first surface and end surfaces remote from the substrate. A dielectric encapsulation element may overlie and extend from the first portion and fill spaces between the bond elements to separate the bond elements from one another. The encapsulation element has a third surface facing away from the first surface. Unencapsulated portions of the bond elements are defined by at least portions of the end surfaces uncovered by the encapsulation element at the third surface. The encapsulation element at least partially defines a second portion of the first surface that is other than the first portion and has an area sized to accommodate an entire area of a microelectronic element. Some conductive elements are at the second portion and configured for connection with such microelectronic element.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Inventors: Belgacem Haba, Ilyas Mohammed, Terrence Caskey, Reynaldo Co, Ellis Chau
  • Patent number: 9190463
    Abstract: A capacitor can include a substrate having a first surface, a second surface remote from the first surface, and a through opening extending between the first and second surfaces, first and second metal elements, and a capacitor dielectric layer separating and insulating the first and second metal elements from one another at least within the through opening. The first metal element can be exposed at the first surface and can extend into the through opening. The second metal element can be exposed at the second surface and can extend into the through opening. The first and second metal elements can be electrically connectable to first and second electric potentials. The capacitor dielectric layer can have an undulating shape.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: November 17, 2015
    Assignee: Tessera, Inc.
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Emeka Uzoh, Piyush Savalia, Vage Oganesian
  • Publication number: 20150325498
    Abstract: A component can include a substrate having a front surface and a rear surface remote therefrom, an opening extending from the rear surface towards the front surface, and a conductive via extending within the opening. The substrate can have a CTE less than 10 ppm/° C. The opening can define an inner surface between the front and rear surfaces. The conductive via can include a first metal layer overlying the inner surface and a second metal region overlying the first metal layer and electrically coupled to the first metal layer. The second metal region can have a CTE greater than a CTE of the first metal layer. The conductive via can have an effective CTE across a diameter of the conductive via that is less than 80% of the CTE of the second metal region.
    Type: Application
    Filed: July 16, 2015
    Publication date: November 12, 2015
    Applicant: TESSERA, INC.
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Emeka Uzoh
  • Publication number: 20150325562
    Abstract: A first area of a first surface of an encapsulated component can be thinned, the component including: a semiconductor chip having an active surface opposite the first surface, and an encapsulant extending outwardly from edges of the semiconductor chip. An entire area of the active surface may be aligned with the first area. After the abrading, a second area of the encapsulated component beyond the first area may have a thickness greater than a thickness of the first area. The second area can be configured to fully support the abraded encapsulated component in a state of the encapsulated component being manipulated by handling equipment.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 12, 2015
    Inventors: Belgacem Haba, Ilyas Mohammed
  • Patent number: 9165906
    Abstract: A microelectronic assembly can include a first package comprising a processor and a second package electrically connected to the first package. The second package can include two or more microelectronic elements each having memory storage array function and contacts at a respective element face, upper and lower opposite package faces, upper and lower terminals at the respective upper and lower package faces, and electrically conductive structure extending through the second package. At least portions of edges of respective microelectronic elements of the two or more microelectronic elements can be spaced apart from one another, so as to define a central region between the edges that does not overlie any of the element faces of the microelectronic elements of the second package. The electrically conductive structure can be aligned with the central region and can electrically connect the lower terminals with at least one of: the upper terminals or the contacts.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 20, 2015
    Assignee: Invensas Corporation
    Inventors: Ilyas Mohammed, Belgacem Haba
  • Patent number: 9167710
    Abstract: Microelectronic assemblies and methods of making the same are disclosed.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: October 20, 2015
    Assignee: Invensas Corporation
    Inventors: Ilyas Mohammed, Belgacem Haba
  • Patent number: 9165911
    Abstract: A microelectronic package may include a first microelectronic unit including a semiconductor chip having first chip contacts, an encapsulant contacting an edge of the semiconductor chip, and first unit contacts exposed at a surface of the encapsulant and electrically connected with the first chip contacts. The package may include a second microelectronic unit including a semiconductor chip having second chip contacts at a surface thereof, and an encapsulant contacting an edge of the chip of the second unit and having a surface extending away from the edge. The surfaces of the chip and the encapsulant of the second unit define a face of the second unit. Package terminals at the face may be electrically connected with the first unit contacts through bond wires electrically connected with the first unit contacts, and the second chip contacts through metalized vias and traces formed in contact with the second chip contacts.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: October 20, 2015
    Assignee: Invensas Corporation
    Inventors: Terrence Caskey, Ilyas Mohammed
  • Publication number: 20150295151
    Abstract: High performance light emitting diode with vias. In accordance with a first embodiment of the present invention, an article of manufacture includes a light emitting diode. The light emitting diode includes a plurality of filled vias configured to connect a doped region on one side of the light emitting diode to a plurality of contacts on the other side of the light emitting diode. The filled vias may comprise less that 10% of a surface area of the light emitting diode.
    Type: Application
    Filed: August 23, 2014
    Publication date: October 15, 2015
    Inventors: Ilyas Mohammed, Liang Wang
  • Publication number: 20150279823
    Abstract: A microelectronic assembly can be made by joining first and second subassemblies by electrically conductive masses to connect electrically conductive elements on support elements of each subassembly. A patterned layer of photo-imageable material may overlie a surface of one of the support elements and have openings with cross-sectional dimensions which are constant or monotonically increasing with height from the surface of that support element, where the masses extend through the openings and have dimensions defined thereby. An encapsulation can be formed by flowing an encapsulant into a space between the joined first and second subassemblies.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Liang Wang
  • Publication number: 20150279730
    Abstract: Methods of fabricating a multi-layer semiconductor device such as a multi-layer damascene or inverted multi-layer damascene structure using only a single or reduced number of exposure steps. The method may include etching a precursor structure formed of materials with differential removal rates for a given removal condition. The method may include removing material from a multi-layer structure under different removal conditions. Further disclosed are multi-layer damascene structures having multiple cavities of different sizes. The cavities may have smooth inner wall surfaces. The layers of the structure may be in direct contact. The cavities may be filled with a conducting metal or an insulator. Multi-layer semiconductor devices using the methods and structures are further disclosed.
    Type: Application
    Filed: June 4, 2015
    Publication date: October 1, 2015
    Inventors: Cyprian UZOH, Vage OGANESIAN, Ilyas MOHAMMED, Craig MITCHELL, Belgacem HABA
  • Patent number: 9142508
    Abstract: Methods of fabricating a multi-layer semiconductor device such as a multi-layer damascene or inverted multi-layer damascene structure using only a single or reduced number of exposure steps. The method may include etching a precursor structure formed of materials with differential removal rates for a given removal condition. The method may include removing material from a multi-layer structure under different removal conditions. Further disclosed are multi-layer damascene structures having multiple cavities of different sizes. The cavities may have smooth inner wall surfaces. The layers of the structure may be in direct contact. The cavities may be filled with a conducting metal or an insulator. Multi-layer semiconductor devices using the methods and structures are further disclosed.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: September 22, 2015
    Assignee: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed, Craig Mitchell, Belgacem Haba
  • Publication number: 20150263252
    Abstract: Optical enhancement of light emitting devices. In accordance with an embodiment of the present invention, an apparatus includes an optical enhancement layer comprising nanoparticles. Each of the nanoparticles includes an electrically conductive core surrounded by an electrically insulating shell. The optical enhancement layer is disposed on a top semiconductor layer in a preferred path of optical emission of a light emitting device. The nanoparticles may enhance the light emission of the light emitting device due to emitter-surface plasmon coupling.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: Liang Wang, Masud Beroz, Ilyas Mohammed