Patents by Inventor Ilyas Mohammed

Ilyas Mohammed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180331094
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Inventors: Javier DeLaCruz, Steven L. Teig, Ilyas Mohammed
  • Publication number: 20180331000
    Abstract: Representative implementations of devices and techniques provide a temporary access point (e.g., for testing, programming, etc.) for a targeted interconnect located among multiple finely spaced interconnects on a surface of a microelectronic component. One or more sacrificial layers are disposed on the surface of the microelectronic component, overlaying the multiple interconnects. An insulating layer is disposed between a conductive layer and the surface, and includes a conductive via through the insulating layer that electrically couples the conductive layer to the target interconnect. The sacrificial layers are configured to be removed after the target interconnect has been accessed, without damaging the surface of the microelectronic component.
    Type: Application
    Filed: December 11, 2017
    Publication date: November 15, 2018
    Inventors: Javier A. DELACRUZ, Paul M. ENQUIST, Gaius Gillman FOUNTAIN, JR., Ilyas MOHAMMED
  • Publication number: 20180331095
    Abstract: Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Inventors: Javier DeLaCruz, Steven L. Teig, Ilyas Mohammed
  • Publication number: 20180301350
    Abstract: Fan-out wafer level packages with resist vias are provided. In an implementation, an example wafer level process or panel fabrication process includes adhering a die to a carrier, applying a temporary resist layer over the die and the carrier, developing the resist layer to form channels or spaces, filling the channels or the spaces with a molding material, removing the remaining resist to create vias in the molding material, and metalizing the vias in the molding material to provide conductive vias for the microelectronics package. The methods automatically create good via and pad alignment. In another implementation, an example process includes adhering a die to a carrier, applying a permanent resist layer over the die and the carrier, developing the resist layer to form vias in the resist layer, and metalizing the vias in the remaining resist of the permanent resist layer to provide conductive vias for the microelectronics package.
    Type: Application
    Filed: January 17, 2018
    Publication date: October 18, 2018
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Rajesh Katkar
  • Publication number: 20180295718
    Abstract: A method for making an interconnection component includes forming a mask layer that covers a first opening in a sheet-like element that includes a first opening extending between the first and second surfaces of the element. The element consists essentially of a material having a coefficient of thermal expansion of less than 10 parts per million per degree Celsius. The first opening includes a central opening and a plurality of peripheral openings open to the central opening that extends in an axial direction of the central opening. A conductive seed layer can cover an interior surface of the first opening. The method further includes forming a first mask opening in at least a portion of the mask layer overlying the first opening to expose portions of the conductive seed layer within the peripheral openings; and forming electrical conductors on exposed portions of the conductive seed layer.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 11, 2018
    Inventors: Cyprian Emeka Uzoh, Craig Mitchell, Belgacem Haba, Ilyas Mohammed
  • Publication number: 20180273377
    Abstract: Representative implementations of techniques and devices provide seals for sealing the joints of bonded microelectronic devices as well as bonded and sealed microelectronic assemblies. Seals are disposed at joined surfaces of stacked dies and wafers to seal the joined surfaces. The seals may be disposed at an exterior periphery of the bonded microelectronic devices or disposed within the periphery using the various techniques.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 27, 2018
    Inventors: Rajesh KATKAR, Liang WANG, Cyprian Emeka UZOH, Shaowu HUANG, Guilian GAO, Ilyas MOHAMMED
  • Publication number: 20180254213
    Abstract: A microelectronic unit can include a carrier structure having a front surface, a rear surface remote from the front surface, and a recess having an opening at the front surface and an inner surface located below the front surface of the carrier structure. The microelectronic unit can also include a microelectronic element having a top surface adjacent the inner surface, a bottom surface remote from the top surface, and a plurality of contacts at the top surface. The microelectronic unit can also include terminals electrically connected with the contacts of the microelectronic element. The terminals can be electrically insulated from the carrier structure. The microelectronic unit can also include a dielectric region contacting at least the bottom surface of the microelectronic element. The dielectric region can define a planar surface located coplanar with or above the front surface of the carrier structure.
    Type: Application
    Filed: May 4, 2018
    Publication date: September 6, 2018
    Applicant: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Craig Mitchell, Ilyas Mohammed, Piyush Savalia
  • Patent number: 10062661
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: August 28, 2018
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20180233448
    Abstract: A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are unconvered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Applicant: Invensas Corporation
    Inventor: Ilyas Mohammed
  • Publication number: 20180190580
    Abstract: In various embodiments, a bonded structure is disclosed. The bonded structure can include an element and a passive electronic component having a first surface bonded to the element and a second surface opposite the first surface. The passive electronic component can comprise a first anode terminal bonded to a corresponding second anode terminal of the element and a first cathode terminal bonded to a corresponding second cathode terminal of the element. The first anode terminal and the first cathode terminal can be disposed on the first surface of the passive electronic component.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 5, 2018
    Inventors: Belgacem Haba, Ilyas Mohammed, Rajesh Katkar, Gabriel Z. Guevara, Javier A. DeLaCruz, Shaowu Huang, Laura Wills Mirkarimi
  • Patent number: 10015881
    Abstract: A method is disclosed for making an interconnection component. The steps include forming a mask layer covering a first opening in a sheet-like element that has first and second opposed surfaces; forming a plurality of mask openings in the mask layer, wherein the first opening and a portion of the first surface are partly aligned with each mask opening; and forming electrical conductors on spaced apart portions of the first surface and on spaced apart portions of the interior surface within the first opening which are exposed by the mask openings. The element may consist essentially of a material having a coefficient of thermal expansion of less than 10 parts per million per degree Celsius. Each conductor may extend along an axial direction of the first opening and the first conductors may be fully separated from one another within the first opening.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 3, 2018
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Craig Mitchell, Belgacem Haba, Ilyas Mohammed
  • Patent number: 9984901
    Abstract: A method of making a microelectronic assembly can include molding a dielectric material around at least two conductive elements which project above a height of a substrate having a microelectronic element mounted thereon, so that remote surfaces of the conductive elements remain accessible and exposed within openings extending from an exterior surface of the molded dielectric material. The remote surfaces can be disposed at heights from said surface of said substrate which are lower or higher than a height of the exterior surface of the molded dielectric material from the substrate surface. The conductive elements can be arranged to simultaneously carry first and second different electric potentials: e.g., power, ground or signal potentials.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: May 29, 2018
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Teck-Gyu Kang, Ilyas Mohammed, Ellis Chau
  • Publication number: 20180130757
    Abstract: A foldable microelectronic assembly and a method for forming the same are provided. One or more packages comprising encapsulated microelectronic elements are formed, along with a compliant layer. The packages and the compliant layer are coupled to a redistribution layer. The compliant layer and the redistribution layer are bent such that the redistribution layer is non-planar.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Applicant: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed
  • Publication number: 20180130746
    Abstract: A structure including a first semiconductor chip with front and rear surfaces and a cavity in the rear surface. A second semiconductor chip is mounted within the cavity. The first chip may have vias extending from the cavity to the front surface and via conductors within these vias serving to connect the additional microelectronic element to the active elements of the first chip. The structure may have a volume comparable to that of the first chip alone and yet provide the functionality of a multi-chip assembly. A composite chip incorporating a body and a layer of semiconductor material mounted on a front surface of the body similarly may have a cavity extending into the body from the rear surface and may have an additional microelectronic element mounted in such cavity.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 10, 2018
    Inventors: Vage OGANESIAN, Ilyas MOHAMMED, Craig MITCHELL, Belgacem HABA, Piyush SAVALIA
  • Patent number: 9966303
    Abstract: A microelectronic unit can include a carrier structure having a front surface, a rear surface remote from the front surface, and a recess having an opening at the front surface and an inner surface located below the front surface of the carrier structure. The microelectronic unit can also include a microelectronic element having a top surface adjacent the inner surface, a bottom surface remote from the top surface, and a plurality of contacts at the top surface. The microelectronic unit can also include terminals electrically connected with the contacts of the microelectronic element. The terminals can be electrically insulated from the carrier structure. The microelectronic unit can also include a dielectric region contacting at least the bottom surface of the microelectronic element. The dielectric region can define a planar surface located coplanar with or above the front surface of the carrier structure.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: May 8, 2018
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Craig Mitchell, Ilyas Mohammed, Piyush Savalia
  • Publication number: 20180114743
    Abstract: A method of fabricating a semiconductor assembly can include providing a semiconductor element having a front surface, a rear surface, and a plurality of conductive pads, forming at least one hole extending at least through a respective one of the conductive pads by processing applied to the respective conductive pad from above the front surface, forming an opening extending from the rear surface at least partially through a thickness of the semiconductor element, such that the at least one hole and the opening meet at a location between the front and rear surfaces, and forming at least one conductive element exposed at the rear surface for electrical connection to an external device, the at least one conductive element extending within the at least one hole and at least into the opening, the conductive element being electrically connected with the respective conductive pad.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 26, 2018
    Applicant: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 9953914
    Abstract: A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are unconvered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: April 24, 2018
    Assignee: Invensas Corporation
    Inventor: Ilyas Mohammed
  • Patent number: 9947643
    Abstract: Inverted optical device. In accordance with an embodiment of the present invention, a plurality of piggyback substrates are attached to a carrier wafer. The plurality of piggyback substrates are dissimilar in composition to the carrier wafer. The plurality of piggyback substrates are processed, while attached to the carrier wafer, to produce a plurality of integrated circuit devices. A flip wafer is attached to the plurality of light emitting diodes, away from the carrier wafer and the carrier wafer is removed. The plurality of light emitting diodes may be singulated to form individual light emitting diode devices.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: April 17, 2018
    Assignee: INVENSAS CORPORATION
    Inventors: Ilyas Mohammed, Masud Beroz, Liang Wang
  • Publication number: 20180102286
    Abstract: In interconnect fabrication (e.g. a damascene process), a barrier layer (possibly conductive) is formed over a substrate with holes, a conductor is formed over the barrier layer, and the conductor and the barrier layer are polished to expose the substrate around the holes and provide interconnect features in the holes. To prevent erosion/dishing of the conductor over the holes, the conductor is covered by another, “first” layer before polishing; then the first layer, the conductor, and the barrier layer are polished to expose the substrate. The first layer may or may not be conductive. The first layer protects the conductor to reduce or eliminate the conductor erosion/dishing over the holes.
    Type: Application
    Filed: December 7, 2017
    Publication date: April 12, 2018
    Applicant: TESSERA, INC.
    Inventors: Cyprian UZOH, Vage OGANESIAN, Ilyas MOHAMMED
  • Patent number: 9917073
    Abstract: A microelectronic package includes first and second encapsulated microelectronic elements, each of which includes a semiconductor die having a front face and contacts thereon. An encapsulant contacts at least an edge surface of each semiconductor die and extends in at least one lateral direction therefrom. Electrically conductive elements extend from the contacts and over the front face to locations overlying the encapsulant. The first and second microelectronic elements are affixed to one another such that one of the front or back surfaces of one of the first and second semiconductor dies is oriented towards one of the front or back surfaces of the other of the first and second semiconductor dies. A plurality of electrically conductive interconnects extend through the encapsulants of the first and second microelectronic elements and are electrically connected with at least one semiconductor die of the first and second microelectronic elements by the conductive elements.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 13, 2018
    Assignee: Invensas Corporation
    Inventor: Ilyas Mohammed