Patents by Inventor Iman Mohammadrezazadeh

Iman Mohammadrezazadeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11654933
    Abstract: An ego vehicle includes decider modules and a grader module coupled to a resolver module. The decider modules generate trajectory decisions at a current time, generate a current two-dimensional slice of a flat space around the ego vehicle, generate future two-dimensional slices of the flat space by projecting the current two-dimensional slice of the flat space forward in time, and generate a three-dimensional state space by stacking the current two-dimensional slice and the future two-dimensional slices. The grader module generates rewards for the trajectory decisions based on a recent behavior of an ego vehicle. The resolver module selects a final trajectory decision for the ego vehicle from the trajectory decisions based on the three-dimensional state space and the rewards. The current two-dimensional slice includes a current ego vehicle location and current neighboring vehicle locations. The future two-dimensional slices include future ego vehicle locations and future neighboring vehicle locations.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 23, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Tiffany J. Hwu, Iman Mohammadrezazadeh, Michael J. Daily, Rajan Bhattacharyya
  • Publication number: 20220144309
    Abstract: An ego vehicle includes decider modules and a grader module coupled to a resolver module. The decider modules generate trajectory decisions at a current time, generate a current two-dimensional slice of a flat space around the ego vehicle, generate future two-dimensional slices of the flat space by projecting the current two-dimensional slice of the flat space forward in time, and generate a three-dimensional state space by stacking the current two-dimensional slice and the future two-dimensional slices. The grader module generates rewards for the trajectory decisions based on a recent behavior of an ego vehicle. The resolver module selects a final trajectory decision for the ego vehicle from the trajectory decisions based on the three-dimensional state space and the rewards. The current two-dimensional slice includes a current ego vehicle location and current neighboring vehicle locations. The future two-dimensional slices include future ego vehicle locations and future neighboring vehicle locations.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 12, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Tiffany J. Hwu, Iman Mohammadrezazadeh, Michael J. Daily, Rajan Bhattacharyya
  • Patent number: 11317870
    Abstract: Described is a system for health assessment. The system is implemented on a mobile device having at least one of an accelerometer, a geographic location sensor, and a camera. In operation, the system obtains sensor data related to an operator of the mobile device from one of the sensors. A network of networks (NoN) is generated based on the sensor data, the NoN having a plurality of layers with linked nodes. Tuples are thereafter generated. Each tuple contains a node from each layer that optimizes importance, diversity, and coherence. Storylines are created based on the tuples that solves a longest path problem for each tuple. The storylines track multiple symptom progressions of the operator. Finally, a disease prediction of the operator is provided based on the storylines.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 3, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Vincent De Sapio, Jaehoon Choe, Iman Mohammadrezazadeh, Kang-Yu Ni, Heiko Hoffmann, Charles E. Martin, Yuri Owechko
  • Patent number: 11236695
    Abstract: Methods and systems are provided for monitoring a fuel injector of an internal combustion engine. In one embodiment, a method includes: receiving a set of feature data, the feature data sensed from a fuel injector during a fuel injection event; processing, by a processor, the set of feature data with a decision tree model to generate a prediction of a fault status; and selectively generating, by the processor, a notification signal based on the prediction.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: February 1, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jin Shen, Jeffrey M. Hutmacher, Patricia M. Laskowsky, Dana J. Suttman, Iman Mohammadrezazadeh, Ruggero Scorcioni, Vincent DeSapio
  • Publication number: 20210079864
    Abstract: Methods and systems are provided for monitoring a fuel injector of an internal combustion engine. In one embodiment, a method includes: receiving a set of feature data, the feature data sensed from a fuel injector during a fuel injection event; processing, by a processor, the set of feature data with a decision tree model to generate a prediction of a fault status; and selectively generating, by the processor, a notification signal based on the prediction.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jin Shen, Jeffrey M. Hutmacher, Patricia M. Laskowsky, Dana J. Suttman, Iman Mohammadrezazadeh, Ruggero Scorcioni, Vincent DeSapio
  • Patent number: 10835176
    Abstract: A system for closed-loop pulsed transcranial stimulation for cognitive enhancement. During operation, the system identifies a region of interest (ROI) in a subject's brain and then estimates ROI source activations based on the estimated source of the ROI. It is then determined if a subject is in a bad encoding state based on the ROI source activations. Finally, one or more electrodes are activated to apply a pulsed transcranial stimulation (tPS) therapy when the subject is in a bad encoding state, a predefined external event or behavior occurs, or the subject is in a consolidation state during sleep.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: November 17, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Iman Mohammadrezazadeh, Praveen K. Pilly, Michael D. Howard
  • Patent number: 10775887
    Abstract: Described is a system for personalizing a human-machine interface (HMI) device based on a mental and physical state of a user. During performance of a task in a simulation environment, the system extracts biometric features from data collected from body sensors, and extracts brain entropy features from electroencephalogram (EEG) signals. The brain entropy features are correlated with the biometric features to generate a mental-state model. The mental-state model is deployed in a HMI device during performance of the task in an operational environment for continuous adaptation of the HMI device to its user's mental and physical states.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: September 15, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Iman Mohammadrezazadeh, Rajan Bhattacharyya
  • Publication number: 20190227626
    Abstract: Described is a system for personalizing a human-machine interface (HMI) device based on a mental and physical state of a user. During performance of a task in a simulation environment, the system extracts biometric features from data collected from body sensors, and extracts brain entropy features from electroencephalogram (EEG) signals. The brain entropy features are correlated with the biometric features to generate a mental-state model. The mental-state model is deployed in a HMI device during performance of the task in an operational environment for continuous adaptation of the HMI device to its user's mental and physical states.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 25, 2019
    Inventors: Iman Mohammadrezazadeh, Rajan Bhattacharyya
  • Publication number: 20190021657
    Abstract: A system for closed-loop pulsed transcranial stimulation for cognitive enhancement. During operation, the system identifies a region of interest (ROI) in a subject's brain and then estimates ROI source activations based on the estimated source of the ROI. It is then determined if a subject is in a bad encoding state based on the ROI source activations. Finally, one or more electrodes are activated to apply a pulsed transcranial stimulation (tPS) therapy when the subject is in a bad encoding state, a predefined external event or behavior occurs, or the subject is in a consolidation state during sleep.
    Type: Application
    Filed: May 18, 2018
    Publication date: January 24, 2019
    Inventors: Iman Mohammadrezazadeh, Praveen K. Pilly, Michael D. Howard