Patents by Inventor Imona C. Omole

Imona C. Omole has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9656203
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. Contacting of the sorbent with the gas mixture and/or desorption of the carbon dioxide from the liquid sorbent utilize hollow fiber contactors that have permeable walls and incorporate particles distinct from a remainder of the walls to influence wetting properties of the contactors. Polytetrafluoroethylene particles may be homogenously disposed throughout hollow fiber contactors to influence wetting properties of the contactors.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: May 23, 2017
    Assignee: Phillips 66 Company
    Inventors: Clint P. Aichele, Imona C. Omole
  • Patent number: 8784532
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. The carbon dioxide then desorbs from the liquid sorbent using hollow-fiber contactors as a source of heat to liberate the carbon dioxide further separated by the hollow-fiber contactors from the liquid sorbent.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 22, 2014
    Assignee: Phillips 66 Company
    Inventors: Imona C. Omole, George F. Schuette
  • Patent number: 8702844
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. Contacting of the sorbent with the gas mixture and/or desorption of the carbon dioxide from the liquid sorbent utilize hollow-fiber contactors that have permeable walls and incorporate particles distinct from a remainder of the walls to influence wetting properties of the contactors.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: April 22, 2014
    Assignee: Phillips 66 Company
    Inventors: Randall L. Heald, Clint P. Aichele, Imona C. Omole, George F. Schuette, Sumod Kalakkunnath
  • Publication number: 20140096682
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. Contacting of the sorbent with the gas mixture and/or desorption of the carbon dioxide from the liquid sorbent utilize hollow fiber contactors that have permeable walls and incorporate particles distinct from a remainder of the walls to influence wetting properties of the contactors. Polytetrafluoroethylene particles may be homogenously disposed throughout hollow fiber contactors to influence wetting properties of the contactors.
    Type: Application
    Filed: August 23, 2013
    Publication date: April 10, 2014
    Inventors: Clint P. Aichele, Imona C. Omole
  • Patent number: 8328906
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 11, 2012
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Kronos
  • Publication number: 20120285320
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. Contacting of the sorbent with the gas mixture and/or desorption of the carbon dioxide from the liquid sorbent utilize hollow-fiber contactors that have permeable walls and incorporate particles distinct from a remainder of the walls to influence wetting properties of the contactors.
    Type: Application
    Filed: April 17, 2012
    Publication date: November 15, 2012
    Applicant: ConocoPhillips Company
    Inventors: Randall L. Heald, Clint P. Aichele, Imona C. Omole, George F. Schuette, Sumod Kalakkunnath
  • Publication number: 20120285319
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. The carbon dioxide then desorbs from the liquid sorbent using hollow-fiber contactors as a source of heat to liberate the carbon dioxide further separated by the hollow-fiber contactors from the liquid sorbent.
    Type: Application
    Filed: March 1, 2012
    Publication date: November 15, 2012
    Applicant: ConocoPhillips Company
    Inventors: Imona C. Omole, George F. Schuette
  • Publication number: 20120247327
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture along asymmetric hollow-fiber membranes that enable transfer of the carbon dioxide from the gas mixture to the liquid sorbent.
    Type: Application
    Filed: September 26, 2011
    Publication date: October 4, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventor: Imona C. Omole
  • Publication number: 20120067208
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Applicants: Georgia Tech Research Corporation, Chevron U.S.A. Inc.
    Inventors: Stephen J. MILLER, Imona C. Omole, William J. Koros
  • Patent number: 8066799
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 29, 2011
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Kronos
  • Patent number: 7981974
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. One method as described herein relates to making the high molecular weight, monoesterified polyimide polymer. According to its broadest aspect, the method for making the high molecular weight, monoesterified polyimide polymer comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; and (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer, wherein the dehydrating conditions at least partially remove water produced during step (b). Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: July 19, 2011
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Koros
  • Publication number: 20090182097
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. One method as described herein relates to making the high molecular weight, monoesterified polyimide polymer. According to its broadest aspect, the method for making the high molecular weight, monoesterified polyimide polymer comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; and (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer, wherein the dehydrating conditions at least partially remove water produced during step (b). Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 16, 2009
    Applicants: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Koros
  • Publication number: 20090178561
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 16, 2009
    Applicants: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Koros