Patents by Inventor Imran Ahmed
Imran Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10567259Abstract: Techniques for implementing a smart filter generator in a visibility network are provided. In one set of embodiments, the smart filter generator can maintain at least one mapping between (1) a first-order parameter found in network traffic replicated from a core network monitored by the visibility network, and (2) a second-order parameter related to the first-order parameter, where the second-order parameter is not found in the network traffic replicated from the core network. The smart filter generator can further receive, from a user, a user-defined packet filter definition comprising a filtering criterion that makes use of the second-order parameter. The smart filter generator can then translate, based on the at least one mapping, the filtering criterion into a version that makes use of the first-order parameter, and can generate a new packet filter comprising the translated version of the filtering criterion.Type: GrantFiled: March 23, 2017Date of Patent: February 18, 2020Assignee: Extreme Networks, Inc.Inventors: Manjunath Meda Nagaraj, Imran Ahmed Ishtiaq, Jude Pragash Vedam
-
Publication number: 20200035461Abstract: In one embodiment, the present disclosure is directed to a method of impedance matching where an RF source is providing at least two non-zero pulse levels. For each of the at least two pulse levels, at a regular time interval, a control unit determines a parameter-related value that is based on a parameter related to the load, and repeatedly detects which of the at least two non-zero pulse levels is being provided by the RF source. Upon detecting one of the at least two non-zero pulse levels, for the detected pulse level, the control unit measures the parameter related to the load to determine a measured parameter value, determines the parameter-related value based on the measured parameter value, and alters the at least one EVC to provide the match configuration, the match configuration based on the parameter-related value.Type: ApplicationFiled: October 3, 2019Publication date: January 30, 2020Inventors: Imran Ahmed BHUTTA, Tomislav LOZIC
-
Publication number: 20190355554Abstract: In one embodiment, the present disclosure is directed to an RF impedance matching network that includes an RF input coupled to an RF source, an RF output coupled to a plasma chamber, and an electronically variable capacitor (EVC). A first control circuit controls the EVC and is separate and distinct from a second control circuit controlling the RF source. To assist in causing an impedance match between the RF source and the plasma chamber, the first control circuit determines, using a match lookup table with a value based on a detected RF parameter, a new EVC configuration for providing a new EVC capacitance. To further cause the impedance match, the second control circuit alters the variable frequency of the RF source, but operates independently from the first control circuit.Type: ApplicationFiled: July 29, 2019Publication date: November 21, 2019Inventors: Michael Gilliam Ulrich, Imran Ahmed Bhutta
-
Patent number: 10483090Abstract: In one embodiment, the present disclosure is directed to a method for matching an impedance. The method can include determining or receiving a reflection parameter value at an RF input or output; stopping the altering of a first capacitance and a second capacitance when the reflection parameter value is at or below a first reflection value; causing a limited altering of the first capacitance and the second capacitance to pursue an impedance match when the reflection parameter value is at or above a second reflection value and at or below the third reflection value; and causing an unlimited altering of the first capacitance and the second capacitance to pursue an impedance match when the reflection parameter value is at or above a third reflection value.Type: GrantFiled: July 9, 2018Date of Patent: November 19, 2019Assignee: RENO TECHNOLOGIES, INC.Inventors: Imran Ahmed Bhutta, Tomislav Lozic
-
Patent number: 10460912Abstract: In one embodiment, a semiconductor processing tool includes a plasma chamber and an impedance matching circuit. The matching circuit includes a first electronically variable capacitor having a first variable capacitance, a second electronically variable capacitor having a second variable capacitance, and a control circuit. The control circuit is configured to determine a variable impedance of the plasma chamber, determine a first capacitance value for the first electronically variable capacitor and a second capacitance value for the second electronically variable capacitor, and generate a control signal to alter at least one of the first variable capacitance and the second variable capacitance to the first capacitance value and the second capacitance value, respectively. An elapsed time between determining the variable impedance of the plasma chamber to when RF power reflected back to the RF source decreases is less than about 150 ?sec.Type: GrantFiled: August 24, 2018Date of Patent: October 29, 2019Assignee: RENO TECHNOLOGIES, INC.Inventors: Imran Ahmed Bhutta, Michael Gilliam Ulrich
-
Publication number: 20190326094Abstract: In one embodiment, the present disclosure is directed to an RF impedance matching network that includes an electronically variable capacitor (EVC) and a control circuit. The control circuit is coupled to a sensor configured to detecting an RF parameter. To cause an impedance match between an RF source and a plasma chamber, the control circuit determines, using a match lookup table with a value based on the detected RF parameter, a match combination of a new EVC configuration for providing a new EVC capacitance, and a new source frequency for the RF source. The control circuit then alters the EVC to the new EVC configuration, and alters the variable frequency of the RF source to the new source frequency.Type: ApplicationFiled: July 3, 2019Publication date: October 24, 2019Inventor: Imran Ahmed Bhutta
-
Patent number: 10454453Abstract: A control circuit for a impedance matching circuit having first and second capacitor arrays receives as input one or more RF parameters of the impedance matching circuit, and in response thereto: determines a first match configuration for the first capacitor array and a second match configuration for the second capacitor array to create an impedance match between a fixed RF source impedance and a variable RF load impedance, the first match configuration and the second match configuration being determined from one or more look-up tables and based upon the detected one or more RF parameters; and alters at least one of the first array configuration and the second array configuration to the first match configuration and the second match configuration, respectively, by controlling the on and off states of (a) each discrete capacitor of the first capacitor array and (b) each discrete capacitor of the second capacitor array.Type: GrantFiled: December 29, 2015Date of Patent: October 22, 2019Assignee: RENO TECHNOLOGIES, INC.Inventors: Imran Ahmed Bhutta, Ching Ping Huang, Michael Gilliam Ulrich, Tomislav Lozic
-
Patent number: 10455729Abstract: In one embodiment, the invention can be a system for cooling an enclosure enclosing electrical components and configured to prevent air and exhaust from escaping the enclosure. The system can include a heat sink comprising a heat exchanger, and a tube extending into and out of the heat exchanger, the tube configured to transport liquid through the heat exchanger. The system can further include a fan configured to push air heated by electrical components onto the heat exchanger. The heat exchanger can be configured to receive heat from air pushed by the fan, and transfer the received heat to the liquid being transported by the tube through the heat exchanger.Type: GrantFiled: March 23, 2017Date of Patent: October 22, 2019Assignee: RENO TECHNOLOGIES, INC.Inventor: Imran Ahmed Bhutta
-
Patent number: 10431428Abstract: In one embodiment, a radio frequency (RF) impedance matching network includes electronically variable capacitors (EVCs), each EVC including discrete capacitors operably coupled in parallel. The discrete capacitors include fine capacitors each having a capacitance value substantially similar to a fine capacitance value, and coarse capacitors each having a capacitance value substantially similar to a coarse capacitance value. The increase of the variable total capacitance of each EVC is achieved by switching in more of the coarse capacitors or more of the fine capacitors than are already switched in without switching out a coarse capacitor that is already switched in.Type: GrantFiled: June 29, 2017Date of Patent: October 1, 2019Inventors: Imran Ahmed Bhutta, Michael Gilliam Ulrich
-
Publication number: 20190272978Abstract: In one embodiment, an RF impedance matching network for a plasma chamber is disclosed. It includes a variable capacitor comprising a plurality of capacitors comprising first coarse capacitors each having a substantially similar first coarse capacitance, second coarse capacitors each having a substantially similar second coarse capacitance, and fine capacitors having different capacitances that increase in value. At least one of the fine capacitors has a capacitance greater than the first coarse capacitance. A control circuit is configured cause a gradual increase in the total capacitance of the variable capacitor by switching in, in a predetermined order, each of the first coarse capacitors, followed by each of the second coarse capacitors, only switching in the fine capacitors whose capacitance is less than a capacitance of a next coarse capacitor of the coarse capacitors predetermined to be switched in next.Type: ApplicationFiled: May 17, 2019Publication date: September 5, 2019Inventors: Imran Ahmed, Michael Gilliam Ulrich
-
Publication number: 20190013185Abstract: In one embodiment, a semiconductor processing tool includes a plasma chamber and an impedance matching circuit. The matching circuit includes a first electronically variable capacitor having a first variable capacitance, a second electronically variable capacitor having a second variable capacitance, and a control circuit. The control circuit is configured to determine a variable impedance of the plasma chamber, determine a first capacitance value for the first electronically variable capacitor and a second capacitance value for the second electronically variable capacitor, and generate a control signal to alter at least one of the first variable capacitance and the second variable capacitance to the first capacitance value and the second capacitance value, respectively. An elapsed time between determining the variable impedance of the plasma chamber to when RF power reflected back to the RF source decreases is less than about 150 ?sec.Type: ApplicationFiled: August 24, 2018Publication date: January 10, 2019Inventors: Imran Ahmed Bhutta, Michael Gilliam Ulrich
-
Publication number: 20190013183Abstract: In one embodiment, the present disclosure is directed to a method for matching an impedance. The method can include determining or receiving a reflection parameter value at an RF input or output; stopping the altering of a first capacitance and a second capacitance when the reflection parameter value is at or below a first reflection value; causing a limited altering of the first capacitance and the second capacitance to pursue an impedance match when the reflection parameter value is at or above a second reflection value and at or below the third reflection value; and causing an unlimited altering of the first capacitance and the second capacitance to pursue an impedance match when the reflection parameter value is at or above a third reflection value.Type: ApplicationFiled: July 9, 2018Publication date: January 10, 2019Inventors: Imran Ahmed Bhutta, Tomislav Lozic
-
Patent number: 10026594Abstract: In one embodiment, an RF impedance matching network includes an RF input configured to operably couple to an RF source; an RF output configured to operably couple to a plasma chamber; a first electronically variable capacitor having a first variable capacitance; a second electronically variable capacitor having a second variable capacitance; and a control circuit operably coupled to the first and second electronically variable capacitors. The control circuit is configured to determine the variable impedance of the plasma chamber, determine a first capacitance value for the first variable capacitance and a second capacitance value for the second variable capacitance, and generate a control signal to alter the first and/or second variable capacitance. An elapsed time between determining the variable impedance of the plasma chamber to when RF power reflected back to the RF source decreases is less than about 150 ?sec.Type: GrantFiled: October 12, 2016Date of Patent: July 17, 2018Inventor: Imran Ahmed Bhutta
-
Publication number: 20180109433Abstract: Techniques for implementing a smart filter generator in a visibility network are provided. In one set of embodiments, the smart filter generator can maintain at least one mapping between (1) a first-order parameter found in network traffic replicated from a core network monitored by the visibility network, and (2) a second-order parameter related to the first-order parameter, where the second-order parameter is not found in the network traffic replicated from the core network. The smart filter generator can further receive, from a user, a user-defined packet filter definition comprising a filtering criterion that makes use of the second-order parameter. The smart filter generator can then translate, based on the at least one mapping, the filtering criterion into a version that makes use of the first-order parameter, and can generate a new packet filter comprising the translated version of the filtering criterion.Type: ApplicationFiled: March 23, 2017Publication date: April 19, 2018Inventors: Manjunath Meda Nagaraj, Imran Ahmed Ishtiaq, Jude Pragash Vedam
-
Patent number: 9938761Abstract: A thermally-broken ornamental door includes a thermally-broken door and a thermally-broken jamb through which thermal transfer is greatly minimized. The thermally-broken door includes an outer panel and an inner panel that are minimally connected through a plurality of door bridging strips. The thermally-broken jamb includes an outer jamb frame and an inner jamb frame that are minimally connected through a plurality of jamb bridging strips. An insulating foam panel is present between the outer panel and the inner panel while an insulating foam core is present between the outer jamb frame and the inner jamb frame. A window assembly is hingedly mounted into the thermally-broken door and includes a retaining spacer frame that minimizes thermal transfer from an exterior environment to an inner window frame through a glass panel of the window assembly. The retaining spacer frame additionally provides structural support to the glass panel.Type: GrantFiled: September 14, 2016Date of Patent: April 10, 2018Inventors: Aneel Nadeem Siddiqui, Ahmed Nadim Siddiqui, Imran Ahmed Siddiqui
-
Patent number: 9865432Abstract: An RF impedance matching network includes an RF input configured to operably couple to an RF source, the RF source having a fixed RF source impedance; an RF output configured to operably couple to a plasma chamber, the plasma chamber having a variable plasma impedance; a series EVC; a shunt EVC; an RF input sensor; and a control circuit configured to: determine an input impedance; determine the plasma impedance; determine a first capacitance value for the series variable capacitance and a second capacitance value for the shunt variable capacitance, the determination of the first capacitance value and the second capacitance value based on the plasma impedance and the RF source impedance; generate a control signal to alter at least one of the series variable capacitance and the shunt variable capacitance to the first capacitance value and the second capacitance value, respectively.Type: GrantFiled: February 9, 2015Date of Patent: January 9, 2018Inventor: Imran Ahmed Bhutta
-
Publication number: 20170301516Abstract: In one embodiment, a radio frequency (RF) impedance matching network includes electronically variable capacitors (EVCs), each EVC including discrete capacitors operably coupled in parallel. The discrete capacitors include fine capacitors each having a capacitance value substantially similar to a fine capacitance value, and coarse capacitors each having a capacitance value substantially similar to a coarse capacitance value. The increase of the variable total capacitance of each EVC is achieved by switching in more of the coarse capacitors or more of the fine capacitors than are already switched in without switching out a coarse capacitor that is already switched in.Type: ApplicationFiled: June 29, 2017Publication date: October 19, 2017Inventors: Imran Ahmed Bhutta, Michael Gilliam Ulrich
-
Patent number: 9779066Abstract: A method for converting Punycode text to Unicode text with augmented reality includes the steps of providing a client device, a computer, a scanner, optical code recognition software, Punycode/ASCII and/or Unicode dictionary tables and further a Punycode text. The Punycode text is scanned and saved in the computer and the scanned image is subjected to the optical code recognition software to identify Punycode strings. Those strings are then converted and segregated into Unicode strings.Type: GrantFiled: May 21, 2015Date of Patent: October 3, 2017Assignee: Umm Al-Qura UniversityInventors: Noman Ahmed Shah, Imran Ahmed Shah, Kamran Ahmed Shah
-
Patent number: 9755641Abstract: A control circuit for an electronic switch includes a first power switch receiving a common input signal and a first voltage input and a second power switch receiving the common input signal and a second voltage input. The first and second power switches switchably connect the first voltage input and the second voltage input, respectively, to a common output in response to the common input signal. The second voltage input is opposite in polarity to the first voltage input, and the first power switch and the second power switch are configured to asynchronously connect the first voltage input and the second voltage input, respectively, to the common output in response to the common input signal, the electronic switch being switched according to the first voltage input or the second voltage input being connected to the common output.Type: GrantFiled: January 12, 2015Date of Patent: September 5, 2017Inventor: Imran Ahmed Bhutta
-
Patent number: 9745660Abstract: An system and method for controlling a plasma chamber includes operably coupling an RF generator to the plasma chamber, the RF generator providing an RF signal to a chamber input of the plasma chamber; measuring a parameter at the chamber input; determining a rate of change based on the measured parameter; detecting an excessive rate of change condition comprising the rate of change exceeding a reference rate of change; detecting a repetitive change condition comprising a predetermined number of the excessive rate of change conditions in a predetermined time; upon detection of the repetitive change condition, decreasing a power of the RF signal provided to the chamber input.Type: GrantFiled: May 4, 2015Date of Patent: August 29, 2017Inventor: Imran Ahmed Bhutta