Patents by Inventor Imtiaz Ali

Imtiaz Ali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200025113
    Abstract: Systems and methods for operating an engine that includes a compression ratio linkage for adjusting engine compression ratio are described. The systems and methods provide different ways of changing a compression ratio of an engine based on forecast or anticipated engine operating conditions. In one example, the forecast or anticipated engine operating conditions may include a forecast or anticipated transmission gear shift.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 23, 2020
    Inventors: Christopher Paul Glugla, Imtiaz Ali, Lyth Alobiedat, Timothy Joseph Clark
  • Publication number: 20190360413
    Abstract: Methods and systems are provided for improving fuel efficiency, monitor completion, and tailpipe emissions of a variable displacement engine. Fueling is initially disabled in cylinders selected to be deactivated while pumping air through the cylinders to an exhaust after-treatment catalyst and oxygen sensor. Once the sensor shows a lean response and catalyst monitoring is completed, cylinder valve operation is also disabled to reduce pumping losses and prevent further oxygen saturation of exhaust components.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 28, 2019
    Inventors: Michael Uhrich, Imtiaz Ali, Mario Anthony Santillo, Joseph Thomas
  • Publication number: 20190331553
    Abstract: Methods and systems are provided for estimating an actual compression ratio of an engine cylinder based on the electric current applied to an actuator of the associated variable compression ratio mechanism. The compression ratio is estimated as a function of both a value and a location, relative to cylinder piston position, of a peak holding current applied by an electric motor on the actuator to maintain the actuator at a commanded compression ratio setting. In this way, the vehicle control system may more accurately infer the current actual compression ratio of each cylinder.
    Type: Application
    Filed: April 26, 2018
    Publication date: October 31, 2019
    Inventors: Christopher Paul Glugla, Gopichandra Surnilla, Imtiaz Ali, Lyth Alobiedat
  • Patent number: 10450983
    Abstract: Methods and systems for diagnosing operation of a compression ratio adjusting mechanism are described. In one example, an output of a pressure sensor is sampled and an assessment of the engine's present compression ratio is made after adjusting sampling of the output. Engine operation may be adjusted responsive to whether or not degradation of the compression ratio adjusting mechanism is indicated.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: October 22, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher Paul Glugla, Gopichandra Surnilla, Imtiaz Ali, Lyth Alobiedat, Mohannad Hakeem, John Eric Rollinger, Paul Algis Baltusis
  • Publication number: 20190276987
    Abstract: Various embodiments of the present disclosure provide a cast-in-place concrete slab load transfer apparatus and method of manufacturing same. In various embodiments, the concrete slab load transfer apparatus includes a plurality of load transfer dowels each having a top surface and a bottom surface, a basket supporting the load transfer dowels, and a plurality of welds including a plurality of breakable welds connecting the bottom surfaces of the load transfer dowels to the basket.
    Type: Application
    Filed: February 19, 2019
    Publication date: September 12, 2019
    Inventors: Robert Alan Rodden, Zafar Imtiaz Ali, Matthew Douglas St. Louis, Randall Derek Riffle, Eddie Kao, Jimmy Lee Hall
  • Publication number: 20190178188
    Abstract: Systems and methods for operating an engine that includes a compression ratio linkage for adjusting engine compression ratio are described. The systems and methods provide different ways of diagnosing the presence or absence of engine misfire in response to engine operating regions that may be more or less prone to torsional engine crankshaft vibration. In one example, engine misfire may be determined responsive to force applied to an engine compression ratio changing linkage.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 13, 2019
    Inventors: Christopher Paul Glugla, Gopichandra Surnilla, Imtiaz Ali, Lyth Alobiedat
  • Publication number: 20190178193
    Abstract: Methods and systems for diagnosing operation of a compression ratio adjusting mechanism are described. In one example, an output of a pressure sensor is sampled and an assessment of the engine's present compression ratio is made after adjusting sampling of the output. Engine operation may be adjusted responsive to whether or not degradation of the compression ratio adjusting mechanism is indicated.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Christopher Paul Glugla, Gopichandra Surnilla, Imtiaz Ali, Lyth Alobiedat, Mohannad Hakeem, John Eric Rollinger, Paul Algis Baltusis
  • Patent number: 10260436
    Abstract: Methods and systems are provided for determining changes in a flow area of an exhaust gas recirculation (EGR) valve for EGR flow estimates due to a change in temperature difference between a stem and body of the EGR valve. In one example, a method includes adjusting an EGR valve based on an estimate of EGR flow, the EGR flow estimated based on a pressure difference across the EGR valve and an adjusted valve flow area. The adjusted valve flow area may be based on the temperature difference between the stem and body of the EGR valve.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: April 16, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Daniel Joseph Styles, James Alfred Hilditch, Imtiaz Ali, Yan Wang, Todd Anthony Rumpsa
  • Publication number: 20180223760
    Abstract: Methods and systems are provided for accurately estimating intake aircharge based on the output of an intake oxygen sensor while flowing EGR, purge, or PCV hydrocarbons to the engine. The unadjusted aircharge estimate is used for engine fuel control while the hydrocarbon adjusted aircharge estimate is used for engine torque control. A controller is configured to sample the oxygen sensor at even increments in a time domain, stamp the sampled data in a crank angle domain, store the sampled data in a buffer, and then select one or more data samples corresponding to a last firing period from the buffer for estimating the intake aircharge.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 9, 2018
    Inventors: Gopichandra Surnilla, James Alfred Hilditch, Ross Dykstra Pursifull, Michael McQuillen, Martin Brown, Imtiaz Ali, Naginder Gogna
  • Patent number: 9995234
    Abstract: Methods and systems are provided for accurately estimating intake aircharge based on the output of an intake oxygen sensor while flowing EGR, purge, or PCV hydrocarbons to the engine. The unadjusted aircharge estimate is used for engine fuel control while the hydrocarbon adjusted aircharge estimate is used for engine torque control. A controller is configured to sample the oxygen sensor at even increments in a time domain, stamp the sampled data in a crank angle domain, store the sampled data in a buffer, and then select one or more data samples corresponding to a last firing period from the buffer for estimating the intake aircharge.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: June 12, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, James Alfred Hilditch, Ross Dykstra Pursifull, Michael McQuillen, Martin Brown, Imtiaz Ali, Naginder Gogna
  • Patent number: 9975446
    Abstract: A vehicle charge station includes at least a first interface and second interface coupled with a power converter and a controller. The controller is configured to, in response to detecting a battery electric vehicle (BEV) classified vehicle coupled with the power converter via the first interface while flowing a charge current to a plug-in hybrid electric vehicle (PHEV) classified vehicle via the second interface, redirect the charge current from the second interface to the first interface. Also, a method of controlling a charge station includes receiving first vehicle data from a first vehicle connected to a first interface and transferring power to the first interface. The method then receives second vehicle data from a second vehicle connected to a second interface and, in response to a comparison of the first vehicle data and the second vehicle data indicating a higher priority for the second vehicle, redirects power from the first interface to the second interface.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: May 22, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: David Charles Weber, Imtiaz Ali, Mohannad Hakeem, Michael James Uhrich
  • Patent number: 9845749
    Abstract: Methods and systems are provided for determining changes in a flow area of an exhaust gas recirculation (EGR) valve for EGR flow estimates due to soot accumulation on the EGR valve. In one example, a method includes indicating soot accumulation on the EGR valve based on a difference in EGR flow estimated with an intake oxygen sensor and with a pressure sensor coupled across the EGR valve. The determination of the difference of the EGR flow estimates may occur when the engine is not boosted.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: December 19, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, James Alfred Hilditch, Imtiaz Ali, Daniel Joseph Styles, Timothy Joseph Clark
  • Patent number: 9797343
    Abstract: Methods and systems are provided for determining degradation of an EGR cooler based on differential pressure across the EGR cooler during EGR flow. In one example, the differential pressure across the EGR cooler may be based on differential pressure across an EGR valve and a pressure downstream from the EGR valve with and without EGR flow. The pressure downstream from the EGR valve may be a compressor inlet pressure or an intake manifold pressure in a low pressure EGR system or high pressure EGR system, respectively.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 24, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Daniel Joseph Styles, James Alfred Hilditch, Imtiaz Ali, Freeman Carter Gates
  • Publication number: 20170268447
    Abstract: Methods and systems are provided for accurately estimating intake aircharge based on the output of an intake oxygen sensor while flowing EGR, purge, or PCV hydrocarbons to the engine. The unadjusted aircharge estimate is used for engine fuel control while the hydrocarbon adjusted aircharge estimate is used for engine torque control. A controller is configured to sample the oxygen sensor at even increments in a time domain, stamp the sampled data in a crank angle domain, store the sampled data in a buffer, and then select one or more data samples corresponding to a last firing period from the buffer for estimating the intake aircharge.
    Type: Application
    Filed: March 21, 2016
    Publication date: September 21, 2017
    Inventors: Gopichandra Surnilla, James Alfred Hilditch, Ross Dykstra Pursifull, Michael McQuillen, Martin Brown, Imtiaz Ali, Naginder Gogna
  • Publication number: 20170260919
    Abstract: Methods and systems are provided for determining changes in a flow area of an exhaust gas recirculation (EGR) valve for EGR flow estimates due to a change in temperature difference between a stem and body of the EGR valve. In one example, a method includes adjusting an EGR valve based on an estimate of EGR flow, the EGR flow estimated based on a pressure difference across the EGR valve and an adjusted valve flow area. The adjusted valve flow area may be based on the temperature difference between the stem and body of the EGR valve.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Gopichandra Surnilla, Daniel Joseph Styles, James Alfred Hilditch, Imtiaz Ali, Yan Wang, Todd Anthony Rumpsa
  • Publication number: 20170246962
    Abstract: A vehicle charge station includes at least a first and second interface coupled with a power converter and a controller. The controller is configured to, in response to detecting a BEV classified vehicle coupled with the power converter via the first interface while flowing a charge current to a PHEV classified vehicle via the second interface, redirect the charge current from the second interface to the first interface. Also, a method of controlling a charge station includes receiving first vehicle data from a first vehicle connected to a first interface and transferring power to the first interface. The method then receives second vehicle data from a second vehicle connected to a second interface, and in response to a comparison of the first vehicle data and second vehicle data indicating higher priority for the second vehicle, redirecting power from the first interface to the second interface.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 31, 2017
    Inventors: David Charles Weber, Imtiaz ALI, Mohannad HAKEEM, Michael James UHRICH
  • Patent number: 9664129
    Abstract: Methods and systems are provided for determining changes in a flow area of an exhaust gas recirculation (EGR) valve for EGR flow estimates due to a change in temperature difference between a stem and body of the EGR valve. In one example, a method includes adjusting an EGR valve based on an estimate of EGR flow, the EGR flow estimated based on a pressure difference across the EGR valve and an adjusted valve flow area. The adjusted valve flow area may be based on the temperature difference between the stem and body of the EGR valve.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: May 30, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Daniel Joseph Styles, James Alfred Hilditch, Imtiaz Ali, Yan Wang, Todd Anthony Rumpsa
  • Patent number: 9574509
    Abstract: Methods and systems are provided for estimating exhaust gas recirculation (EGR) flow based on outputs of two different intake oxygen sensors arranged in an engine intake system. In one example, a method may include, when the engine is boosted, adjusting exhaust gas recirculation (EGR) based on a first output of a first oxygen sensor positioned in an intake passage and exposed to EGR gases and a second output of a second oxygen sensor not exposed to EGR gases and exposed to positive crankcase ventilation and purge flow gases. For example, EGR flow may be estimated based on a difference between the first output and the second output.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael James Uhrich, Imtiaz Ali, Timothy Joseph Clark, Gopichandra Surnilla
  • Publication number: 20160230683
    Abstract: Methods and systems are provided for determining changes in a flow area of an exhaust gas recirculation (EGR) valve for EGR flow estimates due to soot accumulation on the EGR valve. In one example, a method includes indicating soot accumulation on the EGR valve based on a difference in EGR flow estimated with an intake oxygen sensor and with a pressure sensor coupled across the EGR valve. The determination of the difference of the EGR flow estimates may occur when the engine is not boosted.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 11, 2016
    Inventors: Gopichandra Surnilla, James Alfred Hilditch, Imtiaz Ali, Daniel Joseph Styles, Timothy Joseph Clark
  • Publication number: 20160230684
    Abstract: Methods and systems are provided for determining changes in a flow area of an exhaust gas recirculation (EGR) valve for EGR flow estimates due to a change in temperature difference between a stem and body of the EGR valve. In one example, a method includes adjusting an EGR valve based on an estimate of EGR flow, the EGR flow estimated based on a pressure difference across the EGR valve and an adjusted valve flow area. The adjusted valve flow area may be based on the temperature difference between the stem and body of the EGR valve.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 11, 2016
    Inventors: Gopichandra Surnilla, Daniel Joseph Styles, James Alfred Hilditch, Imtiaz Ali, Yan Wang, Todd Anthony Rumpsa