Patents by Inventor In Jo Jeong

In Jo Jeong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8658276
    Abstract: Disclosed is an eco-friendly incombustible biocomposite including: a) a polymer matrix comprising a natural fiber; and b) a ceramic sheet laminated integrally with the polymer matrix. The biocomposite is eco-friendly since the natural fiber is used as a reinforcement material and is incombustible since it is laminated integrally with the ceramic sheet. Further, it has superior storage modulus, dimensional stability and flexural properties and lightweightness, and is processable into various structures. Thus, it is very useful for automotive or building indoor/outdoor materials.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: February 25, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Seong Ok Han, Youn Jong You, Nam Jo Jeong, Hee Yeon Kim
  • Patent number: 8647557
    Abstract: Disclosed herein is a method for producing a sheet including a silica aerogel, the method including (S1) gelling a water glass solution in a mixture of an alcohol and water to prepare a wet gel, (S2) hydrophobically modifying the surface of the wet gel with a non-polar organic solvent, an organosilane compound and an alcohol, (S3) dissolving the hydrophobically modified silica gel and a polymer in an aprotic organic solvent to prepare an electrospinning solution, and (S4) electrospinning the electrospinning solution to produce a fiber web including a silica aerogel, and a sheet in which a polymer and a silica aerogel coexist in the form of a fiber.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: February 11, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Jeong-Gu Yeo, Eunju Lee, Churl-Hee Cho, Hyun-seol Park, Nam-jo Jeong, Chang-Kook Hong, Dong-kook Kim
  • Patent number: 8636843
    Abstract: Heterogeneous nanowires having a core-shell structure consisting of single-crystal apatite as the core and graphitic layers as the shell and a synthesis method thereof are provided. More specifically, provided is a method capable of producing large amounts of heterogeneous nanowires, composed of graphitic shells and apatite cores, in a reproducible manner, by preparing a substrate including an element corresponding to X of X6(YO4)3Z which is a chemical formula for apatite, adding to the substrate a gaseous source containing an element corresponding to Y of the chemical formula, adding thereto a gaseous carbon source, and allowing these reactants to react under optimized synthesis conditions using chemical vapor deposition (CVD), and to a method capable of freely controlling the structure and size of the heterogeneous nanowires and also to heterogeneous nanowires synthesized thereby.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: January 28, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Nam Jo Jeong, Jung Hoon Lee
  • Publication number: 20140024522
    Abstract: The present disclosure relates to a catalyst having metal catalyst nanoparticles supported on natural cellulose fibers and a method of preparing the same, whereby natural cellulose fibers are subjected to specific pretreatment to increase a surface area and form defects on the surface thereof and metal catalyst nanoparticles are then supported on the cellulose catalyst support in a highly dispersed state, thereby providing improved catalysis while allowing production of the catalyst at low cost. The catalyst may be utilized for various catalytic reactions.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Hee Yeon KIM, Nam Jo JEONG, Seong Ok HAN
  • Publication number: 20130121501
    Abstract: An active noise control apparatus for an intake system of a vehicle may include a filter mounted on a portion of the intake system for blocking foreign materials; and a speaker assembly detachably installed at the portion to which the filter is mounted.
    Type: Application
    Filed: February 6, 2012
    Publication date: May 16, 2013
    Applicants: Kia Motors Corporation, Hyundai Motor Company
    Inventors: Hoe Jo Jeong, Ji Hoon Jeong, Hyun Ku Lee
  • Patent number: 8414861
    Abstract: Disclosed herein is a carbonized cellulose material having a graphite nanosized surface layer directly carbonized from a cellulose fiber, and a method of synthesizing a carbonized cellulose material having a graphite nanolayer on a surface thereof, including: i) heating a cellulose fiber in a reactor; ii) forming a primary carbonized cellulose while maintaining temperature of the reactor; iii) cooling the formed primary carbonized cellulose; iv) heating the cooled primary carbonized cellulose; v) forming a secondary carbonized cellulose while maintaining temperature of the reactor; vi) cooling the formed secondary carbonized cellulose.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: April 9, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Nam Jo Jeong, Seong Ok Han, Hong Soo Kim, Hee Yeon Kim
  • Publication number: 20120277091
    Abstract: A method of preparing a catalyst using an alkali metal or an alkaline earth metal in natural cellulose fibers as a co-catalyst and a dispersant. The catalyst is prepared using an alkali metal or an alkaline earth metal as a co-catalyst and a dispersant, thus increasing the dispersibility of catalytic components and enhancing the interactions between the catalyst and the support to thereby retard agglomeration and increase the durability of the catalyst.
    Type: Application
    Filed: December 29, 2011
    Publication date: November 1, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Hee-Yeon Kim, Nam-Jo Jeong, Seong-Ok Han
  • Publication number: 20120258308
    Abstract: Heterogeneous nanowires having a core-shell structure consisting of single-crystal apatite as the core and graphitic layers as the shell and a synthesis method thereof are provided. More specifically, provided is a method capable of producing large amounts of heterogeneous nanowires, composed of graphitic shells and apatite cores, in a reproducible manner, by preparing a substrate including an element corresponding to X of X6(YO4)3Z which is a chemical formula for apatite, adding to the substrate a gaseous source containing an element corresponding to Y of the chemical formula, adding thereto a gaseous carbon source, and allowing these reactants to react under optimized synthesis conditions using chemical vapor deposition (CVD), and to a method capable of freely controlling the structure and size of the heterogeneous nanowires and also to heterogeneous nanowires synthesized thereby.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Nam Jo Jeong, Jung Hoon Lee
  • Patent number: 8221830
    Abstract: Disclosed is a novel cellulose electrode having high performance, which is capable of substituting for carbon paper used as a conventional fuel cell electrode. A method of manufacturing the cellulose electrode includes cutting cellulose fibers to a predetermined length and binding the fibers, or directly weaving the fibers, thus producing a cellulose sheet, directly growing carbon nanotubes on the cellulose sheet, and supporting a platinum nano-catalyst on the surface of the carbon nanotubes using chemical vapor deposition. An electrode including the cellulose fibers and use of cellulose fibers as fuel cell electrodes are also provided. As a novel functional material for fuel cell electrodes, porous cellulose fibers having micropores are used, thereby reducing electrode manufacturing costs and improving electrode performance.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: July 17, 2012
    Assignee: Korea Institue of Energy Research
    Inventors: Hee Yeon Kim, Seong Ok Han, Hong Soo Kim, Nam Jo Jeong
  • Publication number: 20120171488
    Abstract: Disclosed herein is a method for producing a sheet including a silica aerogel, the method including (S1) gelling a water glass solution in a mixture of an alcohol and water to prepare a wet gel, (S2) hydrophobically modifying the surface of the wet gel with a non-polar organic solvent, an organosilane compound and an alcohol, (S3) dissolving the hydrophobically modified silica gel and a polymer in an aprotic organic solvent to prepare an electrospinning solution, and (S4) electrospinning the electrospinning solution to produce a fiber web including a silica aerogel, and a sheet in which a polymer and a silica aerogel coexist in the form of a fiber.
    Type: Application
    Filed: October 4, 2011
    Publication date: July 5, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jeong-Gu Yeo, Eunju Lee, Churl-Hee Cho, Hyun-seol Park, Nam-jo Jeong, Chang-Kook Hong, Dong-kook Kim
  • Publication number: 20120141850
    Abstract: Disclosed herein is a middle or large sized battery, more particularly, a middle or large sized battery that provides improved volume energy density provides an advantageous structure for preparing an end cell with large capacity, particularly by improving the structure of a can and internal connecting system of positive and negative electrodes in the middle or large sized battery. According to the present invention, a middle or large sized battery is provided which comprises a can having an open portion formed on two opposing sides; an electrode jelly roll disposed inside the can, and comprising a current collector of positive electrode, a separator, and a current collector of negative electrode being stacked in turn and wound therein; a lead tab connected to the current collector of positive and negative electrodes of opposing sides in the electrode jelly roll; and a lateral cap assembly electrically in contact with the lead tab and coupled to the opposing sides of the can.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 7, 2012
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventor: Byung Jo JEONG
  • Patent number: 8187400
    Abstract: Disclosed herein are a microtubular honeycomb carbon material obtained by heat-treating cellulose fiber, a production method thereof, a microtubular reactor module fabricated using the microtubular honeycomb carbon, a method for producing the microtubular reactor module, and a microcatalytic reactor system comprising the microtubular reactor module. A carbon material having a new structure is produced by heat-treating cellulose fiber, and a catalytic reactor system having a new structure is constructed by coating the surface of the carbon material with a metal catalyst. Cellulose carbide, used as the reactor material, is very simple to produce. Because it has a micro honeycomb structure having a large number of microchannels and a large number of mesopores, it can be loaded with a large amount of a catalyst compared to the prior material having the same area, and thus it is useful as a catalyst support, and the reaction efficiency can be maximized.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: May 29, 2012
    Assignee: Korea Institute of Energy Research
    Inventors: Nam Jo Jeong, Seong Ok Han, Hong Soo Kim, Hee Yeon Kim
  • Publication number: 20120114941
    Abstract: A synthesis method containing core-shell heterostructure nanowires (or lateral heterostructure nanowires) surrounding alloy in shell and longitudinal metal oxide heterostructure nanowires, and a reversible synthesis method thereof are provided. According to the present invention, core-shell heterostructure nanowires and longitudinal metal oxide nanowires comprised of various substances using the simple process can be produced in volume.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Nam Jo Jeong, Jeong Gu Yeo, Dong Kook Kim
  • Publication number: 20120009120
    Abstract: The present disclosure relates to a thermal cracking resistant zeolite membrane and a method of fabricating the same. The method includes dissolving an alumina-based material, a silica-based material and sodium hydroxide in water to prepare an aqueous solution, stirring the aqueous solution to form a hydrothermal solution, preparing a slurry of zeolite seeds through wet-type vibration pulverization and centrifugal separation of zeolite powder, passing the zeolite seeds through a support by vacuum filtration such that the zeolite seeds can be infiltrated into an inner region of the support ranging from a depth of 3 ?m to a depth corresponding to 50% of a total thickness of the support, and immersing the support into the hydrothermal solution for hydrothermal treatment to grow a dense zeolite separation layer not only on the surface of the support but also on the inner region thereof.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 12, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: CHURL-HEE CHO, Jeong-Gu Yeo, Young-Soo Ahn, Si-Kyung Kim, Joon-Soo Kim, Nam-Jo Jeong, Bo-Yun Jang, Dong-Kook Kim, Hong-Soo Kim
  • Patent number: 8067062
    Abstract: A platinum-based nano catalyst supported carbon nano tube electrode and a manufacturing method thereof, more particularly to a manufacturing method of a carbon nano tube electrode and a carbon nano tube electrode supported with the platinum-based catalyst by growing the carbon nano tube on the surface of the carbon paper and using a CVD method on the surface of the carbon nano tube. By growing the carbon nano tube directly, the broad surface area and excellent electric conductivity of the carbon nano tube can be utilized maximally, and especially, the nano catalyst particles with minute sizes on the surface of the carbon nano tube by using the CVD method as a supporting method of the platinum-based catalyst on the surface of the carbon nano tube, the amount of the platinum can be minimized and still shows an efficient catalyst effect and by improving the catalyst activity by increasing the distribution, so academic and industrial application in the future is highly expected.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: November 29, 2011
    Assignee: Korea Institute of Energy Research
    Inventors: Hee-Yeon Kim, Nam-Jo Jeong, Seung-Jae Lee, Kwang-Sup Song
  • Publication number: 20110212293
    Abstract: Disclosed is an eco-friendly incombustible biocomposite including: a) a polymer matrix comprising a natural fiber; and b) a ceramic sheet laminated integrally with the polymer matrix. The biocomposite is eco-friendly since the natural fiber is used as a reinforcement material and is incombustible since it is laminated integrally with the ceramic sheet. Further, it has superior storage modulus, dimensional stability and flexural properties and lightweightness, and is processable into various structures. Thus, it is very useful for automotive or building indoor/outdoor materials.
    Type: Application
    Filed: December 2, 2010
    Publication date: September 1, 2011
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Seong Ok HAN, Youn Jong YOU, Nam Jo JEONG, Hee Yeon KIM
  • Publication number: 20110111948
    Abstract: The present disclosure relates to a catalyst having metal catalyst nanoparticles supported on natural cellulose fibers and a method of preparing the same, whereby natural cellulose fibers are subjected to specific pretreatment to increase a surface area and form defects on the surface thereof and metal catalyst nanoparticles are then supported on the cellulose catalyst support in a highly dispersed state, thereby providing improved catalysis while allowing production of the catalyst at low cost. The catalyst may be utilized for various catalytic reactions.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 12, 2011
    Inventors: Hee-Yeon Kim, Nam-Jo Jeong, Seong-Ok Han
  • Publication number: 20110097973
    Abstract: A method for continuously removing scale from a hot-rolled carbon steel strip includes: cracking the scale on the hot-rolled steel strip; shot-blasting the cracked scale to remove the scale; deforming the hot-rolled steel strip so as to weaken the bond between scale remaining after the shot-blasting and the hot-rolled steel strip and so as to impart surface roughness to the hot-rolled steel sheet; and polishing the deformed hot-rolled steel strip to remove the remaining scale.
    Type: Application
    Filed: May 19, 2009
    Publication date: April 28, 2011
    Applicant: POSCO
    Inventors: Young-Sool Jin, Tae-Chul Kim, Soo-Hyoun Cho, Kee-Jo Jeong, Young-Ki Lee
  • Patent number: 7911981
    Abstract: A method of configuring a multicast agent and a 1:N overlay multicast network considering a wireless local area network (WLAN) environment of the same are provided. The method includes: a session manger generating a first database with entries of multicast agents subscribing to a session and multicast agents that have applied for subscription to a session but have not been confirmed for normal operation; a multicast agent generating a second database with entries of a path from the root of a tree to which the multicast agent belongs, a hierarchical relation in the tree, the list of probed neighboring nodes, and a list of not-probed neighboring nodes; the multicast agent subscribing to the overlay network; obtaining information on neighboring multicast agents; setting a multicast agent which is determined to be optimal based on the obtained information, as a parent node; and if a multicast agent providing a tree improved from the current tree is found, changing the parent node.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: March 22, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Juyoung Park, Shin Gak Kang, Ok-Jo Jeong, Eiyeon Kwon
  • Publication number: 20110027164
    Abstract: Disclosed herein is an apparatus and method for synthesizing carbon nanotubes, including a fuel supply unit for supplying a large amount of liquid metal catalyst mixture using a syringe pump for quantitatively supplying a liquid metal catalyst mixture, mixed with hydrocarbon-based liquid carbon sources such as xylene, toluene, benzene and the like, and metal catalytic particles, such as iron, nickel, cobalt, molybdenum and the like, and a general liquid pump for supplying a liquid metal catalyst mixture depending on the amount thereof; an evaporation unit for evaporating and atomizing the liquid metal catalyst mixture supplied from the fuel supply unit into precursors having a uniform size on the nanometer scale; a carrier gas supply unit for transferring particles atomized in the evaporation unit to a reactor and transferring carrier gas, having an influence on the synthesis of carbon nanotubes, to the reactor; a horizontally oriented reaction unit for synthesizing carbon nanotubes in large quantities using
    Type: Application
    Filed: June 24, 2010
    Publication date: February 3, 2011
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Nam-Jo JEONG, Yong-Seog Seo