Patents by Inventor In-Taek Oh
In-Taek Oh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12100508Abstract: A method for predicting maximal oxygen uptake (VO2Max) in wearable devices with memory restriction using an ensemble of machine learning algorithms is described. The method is related to the fields of well-being, healthcare and artificial intelligence, and includes a technique that predicts maximal oxygen uptake (VO2Max) in running sessions at different paces using wearable devices with memory restriction. The proposed method requires less than 5 KB of memory to run on a wearable device. Specifically, based on user's profile data (age, gender, height and weight), a set of heart rate (HR) and speed readings of a running session, the method is able to estimate VO2Max.Type: GrantFiled: March 10, 2021Date of Patent: September 24, 2024Assignee: SAMSUNG ELETRÔNICA DA AMAZÔNIA LTDA.Inventors: Marcus De Assis Angeloni, Antonio Joia Neto, Ciro Cavani, Dong Hyun Lee, In Taek Oh
-
Publication number: 20220199244Abstract: A method for predicting maximal oxygen uptake (VO2Max) in wearable devices with memory restriction using ensemble of machine learning algorithms is described. The method is related to the fields of well-being, healthcare and artificial intelligence, and includes a technique that predicts maximal oxygen uptake (VO2Max) in running sessions at different paces using wearable devices with memory restriction. The proposed method requires less than 5 KB of memory to run on a wearable device. Specifically, equipped of user's profile data (age, gender, height and weight), a set of heart rate (HR) and speed readings of a running session, the method is able to estimate VO2Max.Type: ApplicationFiled: March 10, 2021Publication date: June 23, 2022Applicant: SAMSUNG ELETRÔNICA DA AMAZÔNIA LTDA.Inventors: MARCUS DE ASSIS ANGELONI, ANTONIO JOIA NETO, CIRO CAVANI, DONG HYUN LEE, IN TAEK OH
-
Patent number: 9245997Abstract: A method of fabricating a semiconductor device capable of increasing a breakdown voltage without an additional epitaxial layer or buried layer with respect to a high-voltage horizontal MOSFET.Type: GrantFiled: August 6, 2014Date of Patent: January 26, 2016Assignee: Magnachip Semiconductor, Ltd.Inventors: Francois Hebert, I-Shan Sun, Young Bae Kim, Young Ju Kim, Kwang Il Kim, In Taek Oh, Jin Woo Moon
-
Patent number: 9184304Abstract: A junction field-effect transistor (JFET) device is provided. The JFET includes a drain region, a source region, and a junction gate region disposed between the drain region and the source region, and the source region includes two or more source terminals.Type: GrantFiled: January 23, 2014Date of Patent: November 10, 2015Assignee: Magnachip Semiconductor, Ltd.Inventors: Young Bae Kim, In Taek Oh, Kyung Ho Lee, Kwang Il Kim
-
Patent number: 9099557Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.Type: GrantFiled: September 26, 2013Date of Patent: August 4, 2015Assignee: MAGNACHIP SEMICONDUCTOR, LTD.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Patent number: 8969161Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.Type: GrantFiled: October 3, 2013Date of Patent: March 3, 2015Assignee: Magnachip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Publication number: 20150041894Abstract: A method of fabricating a semiconductor device capable of increasing a breakdown voltage without an additional epitaxial layer or buried layer with respect to a high-voltage horizontal MOSFET.Type: ApplicationFiled: August 6, 2014Publication date: February 12, 2015Applicant: MAGNACHIP SEMICONDUCTOR, LTD.Inventors: Francois Hebert, I-Shan Sun, Young Bae Kim, Young Ju Kim, Kwang Il Kim, In Taek Oh, Jin Woo Moon
-
Publication number: 20140306270Abstract: A junction field-effect transistor (JFET) device is provided. The JFET includes a drain region, a source region, and a junction gate region disposed between the drain region and the source region, and the source region includes two or more source terminals.Type: ApplicationFiled: January 23, 2014Publication date: October 16, 2014Applicant: MAGNACHIP SEMICONDUCTOR, LTD.Inventors: Young Bae KIM, In Taek OH, Kyung Ho LEE, Kwang Il KIM
-
Patent number: 8853787Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end portion thereof extending over the isolation layer.Type: GrantFiled: November 30, 2012Date of Patent: October 7, 2014Assignee: Magnachip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Publication number: 20140151793Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end portion thereof extending over the isolation layer.Type: ApplicationFiled: November 30, 2012Publication date: June 5, 2014Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
-
Patent number: 8716796Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.Type: GrantFiled: August 1, 2013Date of Patent: May 6, 2014Assignee: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Patent number: 8692328Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.Type: GrantFiled: August 1, 2013Date of Patent: April 8, 2014Assignee: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Publication number: 20140030862Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.Type: ApplicationFiled: October 3, 2013Publication date: January 30, 2014Applicant: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
-
Publication number: 20140027846Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.Type: ApplicationFiled: September 26, 2013Publication date: January 30, 2014Applicant: MAGNACHIP SEMICONDUCTOR, LTD.Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
-
Publication number: 20140021541Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.Type: ApplicationFiled: August 1, 2013Publication date: January 23, 2014Applicant: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young Chae, IN-Taek OH
-
Publication number: 20140021542Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.Type: ApplicationFiled: August 1, 2013Publication date: January 23, 2014Applicant: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young Chae, In-Taek OH
-
Patent number: 8575702Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.Type: GrantFiled: September 15, 2010Date of Patent: November 5, 2013Assignee: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Patent number: 8552497Abstract: The semiconductor device includes: a first conductive-type first well and a second conductive-type second well configured over a substrate to contact each other; a second conductive-type anti-diffusion region configured in an interface where the first conductive-type first well contacts the second conductive-type second well over the substrate; and a gate electrode configured to simultaneously cross the first conductive-type first well, the second conductive-type anti-diffusion region, and the second conductive-type second well over the substrate.Type: GrantFiled: November 7, 2011Date of Patent: October 8, 2013Assignee: Magnachip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Patent number: 8546881Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.Type: GrantFiled: September 2, 2010Date of Patent: October 1, 2013Assignee: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
-
Patent number: 8546883Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.Type: GrantFiled: July 13, 2010Date of Patent: October 1, 2013Assignee: MagnaChip Semiconductor, Ltd.Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh