Patents by Inventor In-Taek Oh

In-Taek Oh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12100508
    Abstract: A method for predicting maximal oxygen uptake (VO2Max) in wearable devices with memory restriction using an ensemble of machine learning algorithms is described. The method is related to the fields of well-being, healthcare and artificial intelligence, and includes a technique that predicts maximal oxygen uptake (VO2Max) in running sessions at different paces using wearable devices with memory restriction. The proposed method requires less than 5 KB of memory to run on a wearable device. Specifically, based on user's profile data (age, gender, height and weight), a set of heart rate (HR) and speed readings of a running session, the method is able to estimate VO2Max.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: September 24, 2024
    Assignee: SAMSUNG ELETRÔNICA DA AMAZÔNIA LTDA.
    Inventors: Marcus De Assis Angeloni, Antonio Joia Neto, Ciro Cavani, Dong Hyun Lee, In Taek Oh
  • Publication number: 20220199244
    Abstract: A method for predicting maximal oxygen uptake (VO2Max) in wearable devices with memory restriction using ensemble of machine learning algorithms is described. The method is related to the fields of well-being, healthcare and artificial intelligence, and includes a technique that predicts maximal oxygen uptake (VO2Max) in running sessions at different paces using wearable devices with memory restriction. The proposed method requires less than 5 KB of memory to run on a wearable device. Specifically, equipped of user's profile data (age, gender, height and weight), a set of heart rate (HR) and speed readings of a running session, the method is able to estimate VO2Max.
    Type: Application
    Filed: March 10, 2021
    Publication date: June 23, 2022
    Applicant: SAMSUNG ELETRÔNICA DA AMAZÔNIA LTDA.
    Inventors: MARCUS DE ASSIS ANGELONI, ANTONIO JOIA NETO, CIRO CAVANI, DONG HYUN LEE, IN TAEK OH
  • Patent number: 9245997
    Abstract: A method of fabricating a semiconductor device capable of increasing a breakdown voltage without an additional epitaxial layer or buried layer with respect to a high-voltage horizontal MOSFET.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: January 26, 2016
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Francois Hebert, I-Shan Sun, Young Bae Kim, Young Ju Kim, Kwang Il Kim, In Taek Oh, Jin Woo Moon
  • Patent number: 9184304
    Abstract: A junction field-effect transistor (JFET) device is provided. The JFET includes a drain region, a source region, and a junction gate region disposed between the drain region and the source region, and the source region includes two or more source terminals.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: November 10, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Young Bae Kim, In Taek Oh, Kyung Ho Lee, Kwang Il Kim
  • Patent number: 9099557
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 4, 2015
    Assignee: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8969161
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 3, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Publication number: 20150041894
    Abstract: A method of fabricating a semiconductor device capable of increasing a breakdown voltage without an additional epitaxial layer or buried layer with respect to a high-voltage horizontal MOSFET.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Francois Hebert, I-Shan Sun, Young Bae Kim, Young Ju Kim, Kwang Il Kim, In Taek Oh, Jin Woo Moon
  • Publication number: 20140306270
    Abstract: A junction field-effect transistor (JFET) device is provided. The JFET includes a drain region, a source region, and a junction gate region disposed between the drain region and the source region, and the source region includes two or more source terminals.
    Type: Application
    Filed: January 23, 2014
    Publication date: October 16, 2014
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Young Bae KIM, In Taek OH, Kyung Ho LEE, Kwang Il KIM
  • Patent number: 8853787
    Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end portion thereof extending over the isolation layer.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 7, 2014
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Publication number: 20140151793
    Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end portion thereof extending over the isolation layer.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
  • Patent number: 8716796
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 6, 2014
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8692328
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 8, 2014
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Publication number: 20140030862
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
  • Publication number: 20140027846
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
  • Publication number: 20140021541
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 23, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young Chae, IN-Taek OH
  • Publication number: 20140021542
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 23, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young Chae, In-Taek OH
  • Patent number: 8575702
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 5, 2013
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8552497
    Abstract: The semiconductor device includes: a first conductive-type first well and a second conductive-type second well configured over a substrate to contact each other; a second conductive-type anti-diffusion region configured in an interface where the first conductive-type first well contacts the second conductive-type second well over the substrate; and a gate electrode configured to simultaneously cross the first conductive-type first well, the second conductive-type anti-diffusion region, and the second conductive-type second well over the substrate.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 8, 2013
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8546881
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: October 1, 2013
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8546883
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: October 1, 2013
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh