Patents by Inventor Indrani Chakraborty
Indrani Chakraborty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250102431Abstract: The present invention is directed to a method of determining the percentage of full capsids in an adeno-associated virus (AAV) sample comprising AAVs. The invention features two basic steps. The first step involves separating each sample into two aliquots. One aliquot is kept at room temperature (RT), while the other aliquot is heated below the AAV melting point to disrupt the binding affinity of the AAVs to an anti-AAV coated probe. Heating an AAV aliquot leads to differential binding affinity of empty capsids versus full capsids on the anti-AAV-coated probe. The heated empty capsids retain their binding affinity to the probe, while the heated full capsids significantly reduce their binding affinity to the probe. The second step involves measuring the wavelength shifts of heated and RT aliquots due to light interference, and calculating their ratio. By quantitating the ratio against a standard curve, the amount of empty capsids versus full capsids in an unknown sample can be determined.Type: ApplicationFiled: December 6, 2024Publication date: March 27, 2025Inventors: Pu Li, Indrani Chakraborty, Jessie Peh
-
Publication number: 20250019780Abstract: The present invention is directed to a method of determining DNA concentration in a DNA virus. The invention features three basic steps. The initial step is the specific capture of a defined amount of virus capsid particles on a first solid phase. The second step is lysis of the capsid to release the virus DNA from the first solid phase into a lysis solution. After separating the lysis solution from the first solid phase, the third step is contacting the lysis solution with a second solid phase. The second solid phase captures total DNA derived from the captured capsid. The present invention is also directed to a method for measuring the percentage of full virus capsid, comprising first determining the ssDNA concentration in viruses, and then converting the ssDNA concentration to percentage of full virus capsid using a calibration curve having DNA concentration plotted against standards of % of full capsids.Type: ApplicationFiled: September 27, 2024Publication date: January 16, 2025Inventors: Robert F. Zuk, Samuel Yang, Alex Ho Fai Lee, Indrani Chakraborty, Pu Li, Wai Choi
-
Patent number: 12060421Abstract: The present invention provides antibodies, or antigen binding fragments thereof, that bind to human TIGIT (T cell immunoreceptor with Ig and ITIM domains), as well as uses of these antibodies or fragments in therapeutic applications, such as in the treatment of cancer or chronic viral infection. Such method of treatment include combination therapy with inhibitors of other immunomodulatory receptor interactions, such as the PD-1/PD-L1 interaction. The invention further provides polynucleotides encoding the heavy and/or light chain variable region of the antibodies, expression vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies, cells comprising the vectors, and methods of making the antibodies or fragments by expressing them from the cells.Type: GrantFiled: April 12, 2021Date of Patent: August 13, 2024Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Mark F. Maurer, Tseng-hui Timothy Chen, Brigitte Devaux, Mohan Srinivasan, Susan H. Julien, Paul O. Sheppard, Daniel F. Ardourel, Indrani Chakraborty
-
Patent number: 11802162Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: October 25, 2019Date of Patent: October 31, 2023Assignee: Bristol-Myers Squibb CompanyInventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li
-
Patent number: 11466092Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: April 13, 2020Date of Patent: October 11, 2022Assignee: Bristol-Myers Squibb CompanyInventors: Zhehong Cai, Indrani Chakraborty, Marie-Michelle Navarro Garcia, Thomas D. Kempe, Alan J. Korman, Alexander T. Kozhich, Hadia Lemar, Mark Maurer, Christina Maria Milburn, Michael Quigley, Xiang Shao, Mohan Srinivasan, Kent Thudium, Susan Chien-Szu Wong, Jochem Gokemeijer, Xi-Tao Wang, Han Chang, Patrick Guirnalda
-
Patent number: 11408889Abstract: Provided herein are diagnostic antibodies that bind to glucocorticoid-induced tumor necrosis factor receptor (GITR). Such antibodies are useful for methods of detecting the expression of GITR in biological samples, for example, tumor tissue, and identifying a cancer patient likely to respond to anti-GITR immunotherapy or predicting whether a cancer patient will respond to anti-GITR immunotherapy.Type: GrantFiled: May 8, 2020Date of Patent: August 9, 2022Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Xi-Tao Wang, Olufemi A. Adelakun, Anne C. Lewin, Alan J. Korman, Mark J. Selby, Changyu Wang, Haichun Huang, Karla A. Henning, Nils Lonberg, Mohan Srinivasan, Michelle Minhua Han, Guodong Chen, Richard Y. Huang, Indrani Chakraborty, Susan Chien-Szu Wong, Huiming Li
-
Patent number: 11213586Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: November 17, 2016Date of Patent: January 4, 2022Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Guodong Chen, Richard Y. Huang, Indrani Chakraborty, Haichun Huang, Susan Chien-Szu Wong, Huiming Li, Bryan C. Barnhart, Aaron P. Yamniuk, Ming Lei, Liang Schweizer, Sandra V. Hatcher, Arvind Rajpal
-
Patent number: 11084881Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: September 23, 2019Date of Patent: August 10, 2021Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li
-
Patent number: 11008390Abstract: The present invention provides antibodies, or antigen binding fragments thereof, that bind to human TIGIT (T cell immunoreceptor with Ig and ITIM domains), as well as uses of these antibodies or fragments in therapeutic applications, such as in the treatment of cancer or chronic viral infection. Such method of treatment include combination therapy with inhibitors of other immunomodulatory receptor interactions, such as the PD-1/PD-L1 interaction. The invention further provides polynucleotides encoding the heavy and/or light chain variable region of the antibodies, expression vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies, cells comprising the vectors, and methods of making the antibodies or fragments by expressing them from the cells.Type: GrantFiled: December 20, 2018Date of Patent: May 18, 2021Assignee: Bristol-Myers Squibb CompanyInventors: Mark F. Maurer, Tseng-hui Timothy Chen, Brigitte Devaux, Mohan Srinivasan, Susan H. Julien, Paul O. Sheppard, Daniel F. Ardourel, Indrani Chakraborty
-
Patent number: 10690674Abstract: Provided herein are diagnostic antibodies that bind to glucocorticoid-induced tumor necrosis factor receptor (GITR). Such antibodies are useful for methods of detecting the expression of GITR in biological samples, for example, tumor tissue, and identifying a cancer patient likely to respond to anti-GITR immunotherapy or predicting whether a cancer patient will respond to anti-GITR immunotherapy.Type: GrantFiled: June 2, 2016Date of Patent: June 23, 2020Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Xi-Tao Wang, Olufemi A. Adelakun, Anne C. Lewin, Alan J. Korman, Mark J. Selby, Changyu Wang, Haichun Huang, Karla A. Henning, Nils Lonberg, Mohan Srinivasan, Michelle Minhua Han, Guodong Chen, Richard Y. Huang, Indrani Chakraborty, Susan Chien-Szu Wong, Huiming Li
-
Patent number: 10683357Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: March 30, 2017Date of Patent: June 16, 2020Assignee: Bristol-Myers Squibb CompanyInventors: Zhehong Cai, Indrani Chakraborty, Marie-Michelle Navarro Garcia, Thomas D. Kempe, Alan J. Korman, Alexander T. Kozhich, Hadia Lemar, Mark Maurer, Christina Maria Milburn, Michael Quigley, Xiang Shao, Mohan Srinivasan, Kent Thudium, Susan Chien-Szu Wong, Jochem Gokemeijer, Xi-Tao Wang, Han Chang, Patrick Guirnalda
-
Patent number: 10501550Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: December 5, 2016Date of Patent: December 10, 2019Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li
-
Patent number: 10465010Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: July 11, 2017Date of Patent: November 5, 2019Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li
-
Patent number: 10358490Abstract: The present invention relates to antagonizing the activity of IL-17A, IL-17F and IL-23 using bispecific antibodies that comprise a binding entity that is cross-reactive for IL-17A and IL-17F and a binding entity that binds IL-23p19. The present invention relates to novel bispecific antibody formats and methods of using the same.Type: GrantFiled: September 1, 2017Date of Patent: July 23, 2019Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Brenda L. Stevens, Alison Witte, Mark W. Rixon, Josephine M. Cardarelli, Thomas D. Kempe, Scott R. Presnell, Mohan Srinivasan, Susan C. Wong, Guodong Chen, Hui Wei, Stanley R. Krystek, Lumelle A. Schneeweis, Paul O. Sheppard, Indrani Chakraborty
-
Patent number: 10189902Abstract: The present invention provides antibodies, or antigen binding fragments thereof, that bind to human TIGIT (T cell immunoreceptor with Ig and ITIM domains), as well as uses of these antibodies or fragments in therapeutic applications, such as in the treatment of cancer or chronic viral infection. Such method of treatment include combination therapy with inhibitors of other immunomodulatory receptor interactions, such as the PD-1/PD-L1 interaction. The invention further provides polynucleotides encoding the heavy and/or light chain variable region of the antibodies, expression vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies, cells comprising the vectors, and methods of making the antibodies or fragments by expressing them from the cells.Type: GrantFiled: December 22, 2015Date of Patent: January 29, 2019Assignee: Bristol-Myers Squibb CompanyInventors: Mark F. Maurer, Tseng-hui Timothy Chen, Brigitte Devaux, Mohan Srinivasan, Susan H. Julien, Paul O. Sheppard, Daniel F. Ardourel, Indrani Chakraborty
-
Publication number: 20180037645Abstract: The present invention relates to antagonizing the activity of IL-17A, IL-17F and IL-23 using bispecific antibodies that comprise a binding entity that is cross-reactive for IL-17A and IL-17F and a binding entity that binds IL-23p19. The present invention relates to novel bispecific antibody formats and methods of using the same.Type: ApplicationFiled: September 1, 2017Publication date: February 8, 2018Inventors: Brenda L. Stevens, Alison Witte, Mark W. Rixon, Josephine M. Cardarelli, Thomas D. Kempe, Scott R. Presnell, Mohan Srinivasan, Susan C. Wong, Guodong Chen, Hui Wei, Stanley R. Krystek, Lumelle A. Schneeweis, Paul O. Sheppard, Indrani Chakraborty
-
Patent number: 9786407Abstract: A method was developed to impart a significant enhancement in the electrical conductivity of a graphene/polymer composite by the addition of a non-conducting filler to the insulating polymer that acts as both a toughening agent and dispersion aid.Type: GrantFiled: September 8, 2015Date of Patent: October 10, 2017Assignee: Council on Postsecondary EducationInventors: Arjit Bose, Indrani Chakraborty
-
Patent number: 9783606Abstract: The present invention relates to antagonizing the activity of IL-17A, IL-17F and IL-23 using bispecific antibodies that comprise a binding entity that is cross-reactive for IL-17A and IL-17F and a binding entity that binds IL-23p19. The present invention relates to novel bispecific antibody formats and methods of using the same.Type: GrantFiled: December 19, 2014Date of Patent: October 10, 2017Assignee: Bristol-Myers Squibb CompanyInventors: Brenda L. Stevens, Alison Witte, Mark W. Rixon, Josephine M. Cardarelli, Thomas D. Kempe, Scott R. Presnell, Mohan Srinivasan, Susan C. Wong, Guodong Chen, Hui Wei, Stanley R. Krystek, Lumelle A. Schneeweis, Paul O. Sheppard, Indrani Chakraborty
-
Patent number: 9745379Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: November 23, 2015Date of Patent: August 29, 2017Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li
-
Patent number: 9644032Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: May 26, 2016Date of Patent: May 9, 2017Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Zhehong Cai, Indrani Chakraborty, Marie-Michelle Navarro Garcia, Thomas D. Kempe, Alan J. Korman, Alexander T. Kozhich, Hadia Lemar, Mark Maurer, Christina Maria Milburn, Michael Quigley, Xiang Shao, Mohan Srinivasan, Kent Thudium, Susan Chien-Szu Wong, Jochem Gokemeijer, Xi-Tao Wang, Han Chang, Patrick Guirnalda