Patents by Inventor Ingmar Hartl

Ingmar Hartl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100272129
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Application
    Filed: June 15, 2010
    Publication date: October 28, 2010
    Applicant: IMRA America, Inc.
    Inventors: Donald J. HARTER, Gyu CHO, Zhenlin LIU, Martin FERMANN, Xinhua GU, Salvatore F. NATI, Lawrence SHAH, Ingmar HARTL, Mark Bendett
  • Publication number: 20100265972
    Abstract: Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.
    Type: Application
    Filed: June 29, 2010
    Publication date: October 21, 2010
    Applicant: IMRA AMERICA, INC.
    Inventors: Ingmar HARTL, Martin E. FERMANN
  • Patent number: 7809222
    Abstract: Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: October 5, 2010
    Assignee: IMRA America, Inc.
    Inventors: Ingmar Hartl, Martin Fermann
  • Publication number: 20100225897
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 9, 2010
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Ingmar Hartl
  • Publication number: 20100195677
    Abstract: Various embodiments include modelocked fiber laser resonators that may be coupled with optical amplifiers. An isolator may separate the laser resonator from the amplifier, although certain embodiments exclude such an isolator. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the laser resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may be also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators.
    Type: Application
    Filed: January 14, 2010
    Publication date: August 5, 2010
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Ingmar Hartl, Gennady Imeshev
  • Publication number: 20100098117
    Abstract: Various embodiments include modelocked fiber laser resonators that may be coupled with optical amplifiers. An isolator may separate the laser resonator from the amplifier, although certain embodiments exclude such an isolator. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the laser resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may be also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators.
    Type: Application
    Filed: November 17, 2009
    Publication date: April 22, 2010
    Inventors: Martin E. Fermann, Ingmar Hartl, Gennady Imeshev
  • Publication number: 20100060978
    Abstract: An electronic circuit for controlling a laser system consisting of a pulse source and high power fiber amplifier is disclosed. The circuit is used to control the gain of the high power fiber amplifier system so that the amplified output pulses have predetermined pulse energy as the pulse width and repetition rate of the oscillator are varied. This includes keeping the pulse energy constant when the pulse train is turned on. The circuitry is also used to control the temperature of the high power fiber amplifier pump diode such that the wavelength of the pump diode is held at the optimum absorption wavelength of the fiber amplifier as the diode current is varied. The circuitry also provides a means of protecting the high power fiber amplifier from damage due to a loss of signal from the pulse source or from a pulse-source signal of insufficient injection energy.
    Type: Application
    Filed: November 16, 2009
    Publication date: March 11, 2010
    Applicant: IMRA AMERICA, INC.
    Inventors: Salvatore F. NATI, Otho E. ULRICH, JR., Gyu Choen CHO, Wayne A. GILLIS, Donald J. HARTER, Mark BENDETT, Ingmar HARTL
  • Patent number: 7649915
    Abstract: Various embodiments include modelocked fiber laser resonators that may be coupled with optical amplifiers. An isolator may separate the laser resonator from the amplifier, although certain embodiments exclude such an isolator. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the laser resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may be also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: January 19, 2010
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Gennady Imeshev
  • Patent number: 7626758
    Abstract: An electronic circuit for controlling a laser system consisting of a pulse source and high power fiber amplifier is disclosed. The circuit is used to control the gain of the high power fiber amplifier system so that the amplified output pulses have predetermined pulse energy as the pulse width and repetition rate of the oscillator are varied. This includes keeping the pulse energy constant when the pulse train is turned on. The circuitry is also used to control the temperature of the high power fiber amplifier pump diode such that the wavelength of the pump diode is held at the optimum absorption wavelength of the fiber amplifier as the diode current is varied. The circuitry also provides a means of protecting the high power fiber amplifier from damage due to a loss of signal from the pulse source or from a pulse-source signal of insufficient injection energy.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: December 1, 2009
    Assignee: IMRA America, Inc.
    Inventors: Salvatore F. Nati, Otho E. Ulrich, Jr., Gyu Choen Cho, Wayne A. Gillis, Donald J. Harter, Mark Bendett, Ingmar Hartl
  • Publication number: 20090201575
    Abstract: High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 13, 2009
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Ingmar Hartl, Andrius Marcinkevicius, Liang Dong
  • Publication number: 20090097515
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Application
    Filed: December 19, 2008
    Publication date: April 16, 2009
    Applicant: IMRA America, Inc
    Inventors: Donald J. HARTER, Gyu C. Cho, Zhenlin Liu, Martin E. Fermann, Xinhua Gu, Salvatore F. Nati, Lawrence Shah, Ingmar Hartl, Mark Bendett
  • Patent number: 7518788
    Abstract: By writing non-linear chirp into fiber Bragg gratings, greater control over dispersion compensation in chirped pulse amplification (CPA) systems is obtained, such that, for example, the dispersion profile of the fiber Bragg grating and a bulk compressor may be matched. An iterative method of writing the fiber grating can reduce the group delay ripple to very low levels; and adaptive control of the fiber grating dispersion profile can further reduce these levels, while in addition offering greater acceptable yield in the manufacture of such gratings. Fiber Bragg gratings may be designed so as to provide customized pulse shapes optimized for various end uses, such as micromachining, for example, and may also be used to counteract gain-narrowing in a downstream amplifier.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: April 14, 2009
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Gennady Imeshev, Ingmar Hartl, Donald J. Harter
  • Patent number: 7508853
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: March 24, 2009
    Assignee: IMRA, America, Inc.
    Inventors: Donald J. Harter, Gyu C. Cho, Zhenlin Liu, Martin E. Fermann, Xinhua Gu, Salvatore F. Nati, Lawrence Shah, Ingmar Hartl, Mark Bendett
  • Patent number: 7505196
    Abstract: An electronic circuit for controlling a laser system consisting of a pulse source and high power fiber amplifier is disclosed. The circuit is used to control the gain of the high power fiber amplifier system so that the amplified output pulses have predetermined pulse energy as the pulse width and repetition rate of the oscillator are varied. This includes keeping the pulse energy constant when the pulse train is turned on. The circuitry is also used to control the temperature of the high power fiber amplifier pump diode such that the wavelength of the pump diode is held at the optimum absorption wavelength of the fiber amplifier as the diode current is varied. The circuitry also provides a means of protecting the high power fiber amplifier from damage due to a loss of signal from the pulse source or from a pulse-source signal of insufficient injection energy.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: March 17, 2009
    Assignee: IMRA America, Inc.
    Inventors: Salvatore F. Nati, Otho E. Ulrich, Jr., Gyu Choen Cho, Wayne A. Gillis, Donald J. Harter, Mark Bendett, Ingmar Hartl
  • Publication number: 20080285118
    Abstract: An electronic circuit for controlling a laser system consisting of a pulse source and high power fiber amplifier is disclosed. The circuit is used to control the gain of the high power fiber amplifier system so that the amplified output pulses have predetermined pulse energy as the pulse width and repetition rate of the oscillator are varied. This includes keeping the pulse energy constant when the pulse train is turned on. The circuitry is also used to control the temperature of the high power fiber amplifier pump diode such that the wavelength of the pump diode is held at the optimum absorption wavelength of the fiber amplifier as the diode current is varied. The circuitry also provides a means of protecting the high power fiber amplifier from damage due to a loss of signal from the pulse source or from a pulse-source signal of insufficient injection energy.
    Type: Application
    Filed: July 29, 2008
    Publication date: November 20, 2008
    Inventors: Salvatore F. Nati, Otho E. Ulrich, JR., Gyu Choen Cho, Wayne A. Gillis, Donald J. Harter, Mark Bendett, Ingmar Hartl
  • Publication number: 20080232407
    Abstract: An optimized Yb: doped fiber mode-locked oscillator and fiber amplifier system for seeding Nd: or Yb: doped regenerative amplifiers. The pulses are generated in the Yb: or Nd: doped fiber mode-locked oscillator, and may undergo spectral narrowing or broadening, wavelength converting, temporal pulse compression or stretching, pulse attenuation and/or lowering the repetition rate of the pulse train. The conditioned pulses are subsequently coupled into an Yb: or Nd: fiber amplifier. The amplified pulses are stretched before amplification in the regenerative amplifier that is based on an Nd: or Yb: doped solid-state laser material, and then recompressed for output.
    Type: Application
    Filed: June 3, 2008
    Publication date: September 25, 2008
    Inventors: Donald J. HARTER, Gyu C. Cho, Martin E. Fermann, Ingmar Hartl
  • Patent number: 7394591
    Abstract: An optimized Yb: doped fiber mode-locked oscillator and fiber amplifier system for seeding Nd: or Yb: doped regenerative amplifiers. The pulses are generated in the Yb: or Nd: doped fiber mode-locked oscillator, and may undergo spectral narrowing or broadening, wavelength converting, temporal pulse compression or stretching, pulse attenuation and/or lowering the repetition rate of the pulse train. The conditioned pulses are subsequently coupled into an Yb: or Nd: fiber amplifier. The amplified pulses are stretched before amplification in the regenerative amplifier that is based on an Nd: or Yb: doped solid-state laser material, and then recompressed for output.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: July 1, 2008
    Assignee: IMRA America, Inc.
    Inventors: Donald J. Harter, Gyu C. Cho, Martin E. Fermann, Ingmar Hartl
  • Publication number: 20070273960
    Abstract: By writing non-linear chirp into fiber Bragg gratings, greater control over dispersion compensation in chirped pulse amplification (CPA) systems is obtained, such that, for example, the dispersion profile of the fiber Bragg grating and a bulk compressor may be matched. An iterative method of writing the fiber grating can reduce the group delay ripple to very low levels; and adaptive control of the fiber grating dispersion profile can further reduce these levels, while in addition offering greater acceptable yield in the manufacture of such gratings. Fiber Bragg gratings may be designed so as to provide customized pulse shapes optimized for various end uses, such as micromachining, for example, and may also be used to counteract gain-narrowing in a downstream amplifier.
    Type: Application
    Filed: August 10, 2007
    Publication date: November 29, 2007
    Inventors: Martin Fermann, Gennady Imeshev, Ingmar Hartl, Donald Harter
  • Patent number: 7257302
    Abstract: By writing non-linear chirp into fiber Bragg gratings, greater control over dispersion compensation in CPA systems is obtained, such that, for example, the dispersion profile of the fiber Bragg grating and a bulk compressor may be matched. An iterative method of writing the fiber grating can reduce the group delay ripple to very low levels; and adaptive control of the fiber grating dispersion profile can further reduce these levels, while in addition offering greater acceptable yield in the manufacture of such gratings. Fiber Bragg gratings may be designed so as to provide customized pulse shapes optimized for various end uses, such as micromachining, for example, and may also be used to counteract gain-narrowing in a downstream amplifier.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: August 14, 2007
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Gennady Imeshev, Ingmar Hartl, Donald J. Harter
  • Publication number: 20060198398
    Abstract: Various embodiments include modelocked fiber laser resonators that may be coupled with optical amplifiers. An isolator may separate the laser resonator from the amplifier, although certain embodiments exclude such an isolator. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the laser resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may be also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators.
    Type: Application
    Filed: March 10, 2006
    Publication date: September 7, 2006
    Inventors: Martin Fermann, Ingmar Hartl, Gennady Imeshev