Patents by Inventor Ingo Euler

Ingo Euler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11437926
    Abstract: A method for operating a controllable electrical device connected by a data link to a control device for controlling the electrical device, includes using the electrical device to exchange electrical power with a connected electrical grid and using an environmental sensor for collecting environmental information. The control device transmits control signals to the electrical device over the data link. The electrical device assumes a first or a second operating state depending on the control signals transmitted. The electrical device exchanges energy with the electrical grid in the first operating state and the electrical device does not exchange energy with the electrical grid in the second operating state. Environmental information collected by the environmental sensor is transmitted over the data link to the control device only when the electrical device is in the second operating state. An assembly for carrying out the method is also provided.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 6, 2022
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Ingo Euler, Daniel Schmitt, Frank Schremmer, Marcus Wahle, Steffen Pierstorf, Torsten Stoltze, Daniel Boehme
  • Publication number: 20210281190
    Abstract: A method for operating a controllable electrical device connected by a data link to a control device for controlling the electrical device, includes using the electrical device to exchange electrical power with a connected electrical grid and using an environmental sensor for collecting environmental information. The control device transmits control signals to the electrical device over the data link. The electrical device assumes a first or a second operating state depending on the control signals transmitted. The electrical device exchanges energy with the electrical grid in the first operating state and the electrical device does not exchange energy with the electrical grid in the second operating state. Environmental information collected by the environmental sensor is transmitted over the data link to the control device only when the electrical device is in the second operating state. An assembly for carrying out the method is also provided.
    Type: Application
    Filed: July 17, 2018
    Publication date: September 9, 2021
    Inventors: Ingo Euler, Daniel Schmitt, Frank Schremmer, Marcus Wahle, Steffen Pierstorf, Torsten Stoltze, Daniel Boehme
  • Publication number: 20180233896
    Abstract: A supply device supplies electrical power to an electrical assembly at a high-voltage potential. The supply device has a series circuit composed of at least one series resistor and a supply unit. The series circuit can be connected to an energy store and the supply unit can be connected to the assembly that is to be supplied with power. The supply device further has a fuse element, by which a short-circuit current through the supply unit can be electrically interrupted in the event of a short circuit.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 16, 2018
    Inventors: DANIEL BOEHME, INGO EULER, THOMAS KUEBEL, STEFFEN PIERSTORF, DANIEL SCHMITT, FRANK SCHREMMER, TORSTEN STOLTZE, MARCUS WAHLE
  • Patent number: 9936610
    Abstract: A multilevel converter contains at least two submodules which are connected in a row. Each of the submodules contains at least two switches and a capacitor and two current-carrying outer module terminals. Accordingly, at least one of the submodules has at least one outer cooling member which acts as a current-carrying outer module terminal.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: April 3, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Buschendorf, Ingo Euler, Martin Pieschel, Andreas Zenkner
  • Publication number: 20160165759
    Abstract: A multilevel converter contains at least two submodules which are connected in a row. Each of the submodules contains at least two switches and a capacitor and two current-carrying outer module terminals. Accordingly, at least one of the submodules has at least one outer cooling member which acts as a current-carrying outer module terminal.
    Type: Application
    Filed: July 8, 2013
    Publication date: June 9, 2016
    Inventors: MARTIN BUSCHENDORF, INGO EULER, MARTIN PIESCHEL, ANDREAS ZENKNER
  • Patent number: 8907640
    Abstract: A method for the closed-loop control of current converters for adjusting the counter-voltage in a multi-phase electric energy transmission network having a multi-phase connection line. In order to be parameterize in various operating states, phase currents are registered on the connection line and transformed into system current components by way of transformation, voltages are registered on the phases of the connection line, and counter-system voltage components are formed therefrom by way of transformation, which are supplied to a voltage controller. Counter-system current components serving to reduce the counter-system are formed in the voltage controller, which are supplied to a target value input of a current controller. System current components are connected to an actual value input of the current controller, the output parameters thereof serving after retransformation as switching currents for switching units of the current converter.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: December 9, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Franz Karlecik-Maier, Jörg Lang, Klaus Würflinger
  • Patent number: 8817440
    Abstract: A device for converting an electric current includes at least one phase module having an AC terminal and at least one DC terminal. Phase module branches, each of which is equipped with serially connected submodules, are respectively provided between each DC terminal and each AC terminal. Each submodule is provided with at least one power semiconductor. Semiconductor protecting means are connected in parallel or in series to at least one of the power semiconductors to enable the device to withstand even high short-circuit currents for a sufficient period of time. A method for protecting the power semiconductors of the device, is also provided.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: August 26, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Quoc-Buu Tu, Klaus Würflinger
  • Patent number: 8687389
    Abstract: A device has a converter which is connected to a direct voltage circuit through a short-circuit protection unit. The short-circuit protection unit is arranged at least partially in the direct voltage circuit and is provided in the direct voltage circuit to suppress short-circuit current flowing through the converter. The device contains one or more controllable power semiconductors, wherein a protection element is arranged in parallel to at least one of the controllable power semiconductors. The device prevents the negative effects of a short circuit occurring in the direct voltage network in a particularly reliable manner. For this purpose, the protection element is an energy store.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: April 1, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Franz Karlecik-Maier, Jörg Lang, Quoc-Buu Tu, Carsten Wittstock, Klaus Würflinger
  • Patent number: 8610384
    Abstract: A device converts electrical energy into heat in the field of drive voltage technology and/or high voltage technology. The device contains a brake resistance and at least one controllable brake power semiconductor for controlling the conversion, enabling a rapid and economical transformation of effective power into heat as required. To this end, the brake resistance contains a plurality of individual brake resistances that are each part of a bipolar submodule. The submodules are connected in series, form a submodule series connection, and at least partially contain an energy accumulator respectively connected in parallel to an associated individual brake resistance and a controllable brake power semiconductor, which allows the current flow over the respectively associated individual brake resistance in a brake position, and interrupts the current flow over the brake resistance in a normal operating position.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: December 17, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Ingo Euler, Herbert Gambach, Joerg Lang, Quoc-Buu Tu, Carsten Wittstock, Klaus Wurflinger, Andreas Zenkner
  • Publication number: 20130328541
    Abstract: A sub-module for a modular multi-stage converter has an energy store and a power semiconductor series circuit connected in parallel to the energy store. In the semiconductor series circuit, two power semiconductor switches that can be activated and deactivated and have the same forward direction are connected in series. A free-wheeling diode is connected in parallel and in the opposite direction to each power semiconductor switch. A first connection terminal is connected to the energy store. A second connection terminal is connected to a potential point between the power semiconductor switches and to the free-wheeling diodes thereof. A bridging switch is disposed between the connection terminals for bridging the sub-module. The power semiconductors thereof are not destroyed upon closing the bridging switch and at least one connection terminal and/or a bridging branch that connects the two connection terminals to each other has an inductive component.
    Type: Application
    Filed: February 16, 2012
    Publication date: December 12, 2013
    Applicant: Siemens Aktiengesellschaft
    Inventors: Ingo Euler, Herbert Gambach, Frank Schremmer, Marcus Wahle
  • Patent number: 8570779
    Abstract: A device for converting an electric current has a phase module, which in turn has an alternating current connection and at least one direct current connection connected to an intermediate direct current circuit. The device further has an energy accumulator. A phase modulation path is formed between each direct current connection and each alternating current connection. Each phase modulation path has a series connection of submodules, which each have a power semiconductor. A semiconductor protective device is provided in parallel connection to power semiconductors of each submodule. A control unit actuates the semiconductor protective device, and energy accumulator(s) are equipped for supplying energy to the control unit. The device safely prevents damage from a short circuit on the direct-current side, even when the supply grid is connected, because a direct current connection of each phase module is connected to the intermediate direct current circuit via a direct-current switch.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 29, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Quoc-Buu Tu, Klaus Würflinger
  • Patent number: 8462530
    Abstract: A device for inverting an electric current has at least one phase module which has an alternating current connection and at least one direct current connection. Semiconductor valves having semiconductor modules are connected in series and are provided for switching the electric current between the alternating current connection and each direct current connection. At least one power storage device is provided for storing electrical power. In order to provide such a device, with which the adverse effects of a bridging short circuit are reliably and effectively reduced, it is proposed that each semiconductor module has semiconductor groups connected in parallel to each other, wherein each semiconductor group of the semiconductor module is connected via its own separate semiconductor current path to at least one of the power storage devices.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 11, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Quoc-Buu Tu, Klaus Würflinger
  • Patent number: 8390259
    Abstract: A method for charging and/or discharging energy storage devices is performed in a multilevel converter including at least one phase module branch having a series circuit of submodules each with at least one power semiconductor circuit for connection or disconnection of an energy storage device in a circuit parallel to the power semiconductor circuit and a submodule sensor for detection of an energy storage actual value. An energy change state is obtained and a determination is made as to whether connected energy storage devices in a phase module branch can be charged or discharged. The next energy storage device to be switched in each phase module branch is selected by predetermined logic dependent on an energy change state, through which energy stored in energy storage devices is kept approximately at the same level. A high clock rate is simultaneously avoided for connection and disconnection of the selected energy storage device.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Quoc-Buu Tu, Klaus Würflinger
  • Patent number: 8351233
    Abstract: In the method for closed-loop control of at least two converters in an energy transmission and/or distribution system, each rectifier regulator and each inverter regulator provides a differential DC voltage from the difference between a given set DC voltage and the relevant received measured DC voltage, and also provides a differential DC current from a differential DC current from the difference between a set DC current and the corresponding received measured DC current. Each converter is a self-commutated converter with power semiconductors. The rectifier regulation of the provided converter is regulated such that the sum of the product of the differential voltages and the value of given set DC current at the corresponding rectifier and the differential current is a minimum. The inverter regulation regulates the corresponding inverter such that the sum between the differential voltage and the differential current is a minimum.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: January 8, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Tobias Bernhard, Mike Dommaschk, Jörg Dorn, Ingo Euler, Franz Karlecik-Maier, Jörg Lang, Jürgen Rittiger, John-William Strauss, Quoc-Buu Tu, Oliver Venjakob, Carsten Wittstock, Klaus Würflinger
  • Patent number: 8233300
    Abstract: A device for converting an electrical current includes at least one phase module with an AC voltage connection and at least one DC voltage connection, a phase module branch disposed between each DC voltage connection and the AC voltage connection and each phase module branch having a series circuit of submodules, each of which has an energy accumulator and at least one power semiconductor and closed-loop control means for regulating the device. The device can regulate circulating currents in a targeted manner by providing each phase module with at least one inductance and configuring the closed-loop control means to regulate a circulating current that flows through the phase modules.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: July 31, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Dag Sörangr, Quoc-Buu Tu, Klaus Würflinger
  • Publication number: 20120187924
    Abstract: A method for the closed-loop control of current converters for adjusting the counter-voltage in a multi-phase electric energy transmission network having a multi-phase connection line. In order to be parameterize in various operating states, phase currents are registered on the connection line and transformed into system current components by way of transformation, voltages are registered on the phases of the connection line, and counter-system voltage components are formed therefrom by way of transformation, which are supplied to a voltage controller. Counter-system current components serving to reduce the counter-system are formed in the voltage controller, which are supplied to a target value input of a current controller. System current components are connected to an actual value input of the current controller, the output parameters thereof serving after retransformation as switching currents for switching units of the current converter.
    Type: Application
    Filed: August 17, 2010
    Publication date: July 26, 2012
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Franz Karlecik-Maier, Jörg Lang, Klaus Würflinger
  • Patent number: 8183874
    Abstract: A method and a device for converting an electrical current include at least one phase module having an AC voltage connection and at least one DC voltage connection. A phase module branch is disposed between each DC voltage connection and the AC voltage connection. Each phase module branch includes a series circuit of submodules, each having a capacitor and at least one power semiconductor. The apparatus can establish aging of an energy storage device in a simple manner by using a capacitor diagnosis device for a time-dependent determination of the capacitance of each capacitor.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: May 22, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Quoc-Buu Tu, Klaus Würflinger
  • Patent number: 8144489
    Abstract: A converter has at least one phase module, an AC voltage terminal and a DC voltage terminal. A phase module branch is formed between each DC voltage terminal and each AC voltage terminal. Each phase module branch has a series circuit containing submodules which each have a capacitor, a power semiconductor, and submodule sensors for detecting energy stored in the capacitor and with a regulation device for regulating the apparatus in dependence on energy values and predetermined desired values. Therefore unbalanced loading of the energy storage units is avoided. The regulation device has a summation unit for summing the energy values while obtaining branch energy actual values and a device for calculating circuit current desired values in dependence on the branch energy actual values. The regulation device compensates for imbalances in the branch energy actual values in dependence on the circuit current desired values.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: March 27, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Jörg Lang, Quoc-Buu Tu, Klaus Würflinger
  • Publication number: 20110235375
    Abstract: A device has a converter which is connected to a direct voltage circuit through a short-circuit protection unit. The short-circuit protection unit is arranged at least partially in the direct voltage circuit and is provided in the direct voltage circuit to suppress short-circuit current flowing through the converter. The device contains one or more controllable power semiconductors, wherein a protection element is arranged in parallel to at least one of the controllable power semiconductors. The device prevents the negative effects of a short circuit occurring in the direct voltage network in a particularly reliable manner. For this purpose, the protection element is an energy store.
    Type: Application
    Filed: September 5, 2008
    Publication date: September 29, 2011
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Mike Dommaschk, Jörg Dorn, Ingo Euler, Franz Karlecik-Maier, Jörg Lang, Quoc-Buu Tu, Carsten Wittstock, Klaus Würflinger
  • Publication number: 20110205771
    Abstract: A closed-loop control method for at least two converters in an energy transmission and/or distribution system. The converters may be controlled either as rectifier or inverter and they are connected to each other by a DC link. A measured DC voltage and a measured DC current is measured at each converter and transmitted to a rectifier regulator for regulating the corresponding rectifier or to an inverter regulator for regulating the corresponding inverter. Each rectifier regulator and each inverter regulator gives the difference between a given set DC voltage and the relevant received measured DC voltage to give a differential DC voltage and the difference between a set DC current and the corresponding received measured DC current to give a differential DC current.
    Type: Application
    Filed: June 17, 2008
    Publication date: August 25, 2011
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Tobias Bernhard, Mike Dommaschk, Jörg Dorn, Ingo Euler, Franz Karlecik-Maier, Jörg Lang, Jürgen Rittiger, John-William Strauss, Quoc-Buu Tu, Oliver Venjakob, Carsten Wittstock, Klaus Würflinger