Patents by Inventor Ingo Koschmieder

Ingo Koschmieder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953667
    Abstract: A device by which the magnification stages of a magnification selector based on Galilean telescope systems can be adjusted by a motor. The magnification selector has a sensor that transmits the currently magnification stage to a control unit; in the control unit, an assignment of the magnification stages present on the magnification selector to a sequence of the magnification stages, organized based on size, is stored. For the user, there are operating elements connected to the control unit for selecting a magnification stage. In order to set the magnification stage selected by the user via the operating elements, the magnification selector has an actuator, which is connected to the control unit to receive appropriate control signals. Although provided in particular for slit lamps and surgical microscopes having eyepieces, the solution can also be applied in other ophthalmological devices or devices from other technical fields.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 9, 2024
    Assignee: Carl Zeiss Meditec AG
    Inventors: David Golz, Dietrich Martin, Ingo Koschmieder
  • Patent number: 11513331
    Abstract: A device for outcoupling a portion of the radiation of an observation beam path of a binocular eyepiece for documentation or co-observation that is freely selectable at any time. For the outcoupling, a rotatable supporting unit, the axis of rotation of which is parallel to the axes of the observation beam paths, is arranged in the housing having the binocular eyepiece. Three optical elements are arranged on this supporting unit such that an outer and the middle optical element and, after rotation of the supporting unit, the middle and the other outer optical element are each located in one of the observation beam paths. Here, the two outer optical elements have a beam-splitting effect and outcouple a portion of the observation radiation into a common documentation beam path.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 29, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ingo Koschmieder, Dietrich Martin, Günter Link, Lothar Müller
  • Patent number: 11234592
    Abstract: An arrangement for adapting the focal plane of an optical system to a non-planar, in particular spherical or spheroidal object, wherein the optical system has a positive total refractive power and generates a real image. The optical system also comprises an optical element with a negative refractive power. Principally useful in all technical fields with the corresponding requirements relating to a curved focal plane, the arrangement is useful in ophthalmologic devices. The eye which is to be examined is the spherical or spheroidal object for example, the front of the eye which has radii of between 5 and 10 mm of small dimensions.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 1, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Andrea Berner, Ingo Koschmieder, Dietrich Martin
  • Publication number: 20200301123
    Abstract: A device for outcoupling a portion of the radiation of an observation beam path of a binocular eyepiece for documentation or co-observation that is freely selectable at any time. For the outcoupling, a rotatable supporting unit, the axis of rotation of which is parallel to the axes of the observation beam paths, is arranged in the housing having the binocular eyepiece. Three optical elements are arranged on this supporting unit such that an outer and the middle optical element and, after rotation of the supporting unit, the middle and the other outer optical element are each located in one of the observation beam paths. Here, the two outer optical elements have a beam-splitting effect and outcouple a portion of the observation radiation into a common documentation beam path.
    Type: Application
    Filed: September 11, 2018
    Publication date: September 24, 2020
    Applicant: Carl Zeiss Meditec AG
    Inventors: Ingo KOSCHMIEDER, Dietrich MARTIN, Günter LINK, Lothar MÜLLER
  • Publication number: 20200218049
    Abstract: A device by which the magnification stages of a magnification selector based on Galilean telescope systems can be adjusted by a motor. The magnification selector has a sensor that transmits the currently magnification stage to a control unit; in the control unit, an assignment of the magnification stages present on the magnification selector to a sequence of the magnification stages, organized based on size, is stored. For the user, there are operating elements connected to the control unit for selecting a magnification stage. In order to set the magnification stage selected by the user via the operating elements, the magnification selector has an actuator, which is connected to the control unit to receive appropriate control signals. Although provided in particular for slit lamps and surgical microscopes having eyepieces, the solution can also be applied in other ophthalmological devices or devices from other technical fields.
    Type: Application
    Filed: August 23, 2018
    Publication date: July 9, 2020
    Applicant: Carl Zeiss Meditec AG
    Inventors: David GOLZ, Dietrich MARTIN, Ingo KOSCHMIEDER
  • Publication number: 20190374101
    Abstract: An arrangement for adapting the focal plane of an optical system to a non-planar, in particular spherical or spheroidal object, wherein the optical system has a positive total refractive power and generates a real image. The optical system also comprises an optical element with a negative refractive power. Principally useful in all technical fields with the corresponding requirements relating to a curved focal plane, the arrangement is useful in opthalmologic devices. The eye which is to be examined is the spherical or spheroidal object for example, the front of the eye which has radii of between 5 and 10 mm of small dimensions.
    Type: Application
    Filed: December 15, 2017
    Publication date: December 12, 2019
    Applicant: Carl Zeiss Meditec AG
    Inventors: Andrea BERNER, Ingo KOSCHMIEDER, Dietrich MARTIN
  • Patent number: 9044164
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 2, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 8967808
    Abstract: An ophthalmological measuring system, for obtaining biometric data of an eye, provided with the necessary calibration and check devices for monitoring the functionality and the calibration status. The ophthalmological measuring system includes an illumination source for illuminating an eye with light and with a sensor for recording and analyzing back-scattered or reflected light components and a controller. At least one calibration and check system integrated in the ophthalmological measuring system for monitoring the functional and calibration status is provided. A device is also provided which houses the calibration and test structures and which reads off the individual physical data therefrom by an interface. The ophthalmological measuring system is in particular provided for determining biometrical data but can also be used for ophthalmological, dermatological or other devices which require calibration and/or functional checking at regular intervals.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 3, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gerard Antkowiak, Martin Hacker, Ingo Koschmieder, Roland Bergner, Ralf Ebersbach, Thomas Pabst, Eberhard Hofmann, Michael Guentzschel, Steffen Dubnack
  • Publication number: 20140268057
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 8690330
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 8, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 8534838
    Abstract: A device for performing distance measurements on an eye. The device includes an interferometer, focuses at least one measurement beam records backscattered radiation and interferometrically generates a measurement signal displaying structures of the eye by time-domain, spectral-domain or Fourier-domain coherence reflectometry, has an adjustment apparatus for laterally and/or axially displacing the focus in the eye or for varying a polarization state of the measurement beam and has a control apparatus which actuates the interferometer, wherein the control apparatus generates a plurality of A-scan individual signals from the backscattered radiation, combines these to an A-scan measurement signal and actuates the adjustment apparatus for displacing the position of the focus or for varying the polarization while recording the backscattered radiation from which the control apparatus generates the A-scan individual signals is being recorded.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: September 17, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Roland Barth, Roland Bergner, Wilfried Bissmann, Rudolf Murai von Buenau, Martin Hacker, Ingo Koschmieder, Adolf Friedrich Fercher, Branislav Grajciar, Ralf Ebersbach
  • Patent number: 8277047
    Abstract: Illumination unit for the generation of optical sectional images in transparent media, particularly in the eye is disclosed. In the arrangement according to the invention, the low-divergence beams emitted by a laser serving as illumination source are imaged on or in the eye under examination by a reflection element which is controllable in a defined manner and beam deflection elements present in the beam path. The optical sectional images resulting in and on the eye can be observed and/or recorded, further processed and evaluated with an image processing unit in a known manner. In the solution according to the invention, a sectional image is generated by the deliberate periodic beam deflection of a particularly fine laser beam with high depth of focus, which sectional image remains sharp through the entire dimension of the object to be examined and makes possible an improved evaluation.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: October 2, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventor: Ingo Koschmieder
  • Publication number: 20110299038
    Abstract: An ophthalmological measuring system, for obtaining biometric data of an eye, provided with the necessary calibration and check devices for monitoring the functionality and the calibration status. The ophthalmological measuring system includes an illumination source for illuminating an eye with light and with a sensor for recording and analyzing back-scattered or reflected light components and a controller. At least one calibration and check system integrated in the ophthalmological measuring system for monitoring the functional and calibration status is provided. A device is also provided which houses the calibration and test structures and which reads off the individual physical data therefrom by an interface. The ophthalmological measuring system is in particular provided for determining biometrical data but can also be used for ophthalmological, dermatological or other devices which require calibration and/or functional checking at regular intervals.
    Type: Application
    Filed: November 4, 2009
    Publication date: December 8, 2011
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Gerard Antkowiak, Martin Hacker, Ingo Koschmieder, Roland Bergner, Ralf Ebersbach, Thomas Pabst, Eberhard Hofmann, Michael Guentzschel, Steffen Dubnack
  • Patent number: 8066374
    Abstract: The invention is directed to an optical system for a fundus camera for reflection-free opthalmoscopy having a beam path with refractive and reflective optical elements which are used substantially in common for illumination and observation or recording. An imaging mirror system substantially comprising a plurality of reflecting optical elements in the form of mirrors and is provided for illuminating and imaging the fundus. At least one optical element, for example, mirror, is formed as a freeform mirror with an imaging, reflecting freeform surface. The optical elements are arranged in a housing in a precisely defined position and attitude relative to one another in such a way that an imaging of the reflecting surfaces of the optical elements on the image of the imaged retina is prevented within a wide diopter range of the patient's eye to be examined.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: November 29, 2011
    Assignee: Carl Zeiss Meditec, AG
    Inventors: Ingo Koschmieder, Manfred Dick, Detlef Biernat, Jan Buchheister, Lothar Mueller
  • Publication number: 20110255054
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Application
    Filed: December 21, 2009
    Publication date: October 20, 2011
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 7992998
    Abstract: An ophthalmological measuring system for obtaining biometric data of an eye with a view to the pre-operative determination of a replacement lens or supplementary lens or refractive operations. The invention includes a combination of a measuring instrument based on ultrasound, an optical measuring instrument, and an evaluation unit, measuring values of the optical measuring instrument and/or of the measuring instrument based on ultrasound being used by the evaluation unit for determining the biometric data of an eye. Furthermore, keratometric and/or pachymetric measurements can also be carried out. The combination of different measuring systems enables a complete examination or diagnosis of a patient on a measuring table, so that the patient does not need to be moved, or have to come back at a later date for more measurements.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: August 9, 2011
    Assignee: Carl Zeiss Meditec AG
    Inventors: Roland Bergner, Ingo Koschmieder, Wilfried Bissmann
  • Publication number: 20110149245
    Abstract: A device for performing distance measurements on an eye. The device includes an interferometer, focuses at least one measurement beam records backscattered radiation and interferometrically generates a measurement signal displaying structures of the eye by time-domain, spectral-domain or Fourier-domain coherence reflectometry, has an adjustment apparatus for laterally and/or axially displacing the focus in the eye or for varying a polarization state of the measurement beam and has a control apparatus which actuates the interferometer, wherein the control apparatus generates a plurality of A-scan individual signals from the backscattered radiation, combines these to an A-scan measurement signal and actuates the adjustment apparatus for displacing the position of the focus or for varying the polarization while recording the backscattered radiation from which the control apparatus generates the A-scan individual signals is being recorded.
    Type: Application
    Filed: August 11, 2009
    Publication date: June 23, 2011
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Roland Barth, Roland Bergner, Wilfried Bissmann, Rudolf Murai von Buenau, Martin Hacker, Ingo Koschmieder, Adolf Friedrich Fercher, Branislav Grajciar, Ralf Ebersbach
  • Patent number: 7871164
    Abstract: A homogeneously illuminating ophthalmic instrument includes an illumination device having a source of illumination, a homogenizing unit and a projection device, at least one organic or inorganic source of radiation with spectrally selective emission being used as a source of illumination. The illumination generated in this way enables correspondingly adapted visual and/or digital observation, recording or display of the examined regions of the eye by a visualizing unit.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: January 18, 2011
    Assignee: Carl Zeiss Meditec AG
    Inventors: Egon Luther, Ingo Koschmieder, Manfred Dick, Joachim Winter, Uwe Mohrholz, Thomas Mohr, Daniel Bublitz, Enrico Geissler
  • Patent number: D923795
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 29, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Jörg Reinhardt, Michael Güntzschel, Dietrich Martin, David Golz, Ingo Koschmieder, Heide Bachmann, Jenny Dünger, Tina Müller, Ilka Schlesiger, Martin Stohr, Qiong Zhang, Franco Giannozzi
  • Patent number: D935620
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: November 9, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Jörg Reinhardt, Michael Güntzschel, Dietrich Martin, David Golz, Ingo Koschmieder, Heide Bachmann, Jenny Dünger, Tina Müller, Ilka Schlesiger, Martin Stohr, Qiong Zhang, Franco Giannozzi