Patents by Inventor Ingrid Kratschmer

Ingrid Kratschmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11795112
    Abstract: A method for producing the component, and to the use of the component. The method for producing a three-dimensional, ceramic component containing silicon carbide, by a) providing a powdery composition having a grain size (d50) between 3 microns and 500 microns and comprising at least 50 wt % of coke, b) providing a liquid binder, c) depositing a layer of the material provided in a) in a planar manner and locally depositing drops of the material provided in b) onto said layer and repeating step c), the local depositing of the drops in the subsequent repetitions of the step is adapted in accordance with the desired shape of the component to be produced, d) at least partially curing or drying the binder and obtaining a green body having the desired shape of the component, e) carbonising the green body, and f) siliconising the carbonised green body by infiltration with liquid silicon.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: October 24, 2023
    Assignee: SGL CARBON SE
    Inventors: Oswin Öttinger, Dominik Rivola, Stefan Klein, Andreas Kienzle, Ingrid Krätschmer
  • Publication number: 20180339946
    Abstract: A method for producing the component, and to the use of the component. The method for producing a three-dimensional, ceramic component containing silicon carbide, by a) providing a powdery composition having a grain size (d50) between 3 microns and 500 microns and comprising at least 50 wt % of coke, b) providing a liquid binder, c) depositing a layer of the material provided in a) in a planar manner and locally depositing drops of the material provided in b) onto said layer and repeating step c), the local depositing of the drops in the subsequent repetitions of the step is adapted in accordance with the desired shape of the component to be produced, d) at least partially curing or drying the binder and obtaining a green body having the desired shape of the component, e) carbonising the green body, and 0 siliconising the carbonised green body by infiltration with liquid silicon.
    Type: Application
    Filed: November 24, 2016
    Publication date: November 29, 2018
    Applicant: SGL CARBON SE
    Inventors: Oswin ÖTTINGER, Dominik RIVOLA, Stefan KLEIN, Andreas KIENZLE, Ingrid KRÄTSCHMER
  • Patent number: 9005732
    Abstract: A composition comprising polymer-bound fiber tows containing carbon fibers, the polymer-bound fiber tows having an average length of 3 mm to 50 mm measured in the fiber direction, and an average bundle thickness of 0.1 mm to 10 mm measured perpendicular to the fiber direction, and in which at least 75% of all polymer-bound fiber tows have a length that is at least 90% and not greater than 110% of the average length combined with a carbon-ceramic material.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: April 14, 2015
    Assignee: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Patent number: 8906289
    Abstract: Method for manufacturing a friction disk including preparing a mixture including a carbide-forming element having an average particle size ?2,000 ?m, a resin, optionally a binder, and optionally fine carbon, and/or short carbon fibers; forming the mixture at ? to 280° C. to produce a molded body; heating the molded body to approximately 750° C. to approximately 1300° C. to form a porous carbon body including a carbon residue; heating the porous carbon body to a temperature above the melting point of the carbide-forming element thereby reacting the carbide-forming element with at least a portion of the carbon residue to yield an alveolar structure; infiltrating the alveolar structure with silicon at a temperature above the melting point of silicon thereby filling at least one pore of the alveolar structure with silicon and reacting the silicon with an amount of unreacted carbon residue to form silicon carbide; and obtaining a friction disk.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: December 9, 2014
    Assignee: Audi
    Inventors: Andreas Kienzle, Ingrid Krätschmer
  • Patent number: 8748009
    Abstract: The present invention relates to a material including a matrix and at least one reinforcing element introduced therein, wherein the matrix is selected from the group consisting of plastic, carbon, ceramic, glass, clay, metal, and combinations thereof, and the reinforcing element is spherical to ellipsoidal in shape and has an onionskin-like structure. The present invention further relates to a method for producing a material including steps preparing at least one spherical to ellipsoidal reinforcing element having an onionskin-type structure, and introducing the reinforcing element into a matrix, wherein the matrix is selected from the group consisting of plastic, carbon, ceramic, glass, clay, metal, and combinations thereof. The present invention further relates to use of the material in a friction application, as abrasion protection, an injection molding part, a support plate, catalyst substrate or as bone replacement material.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: June 10, 2014
    Assignee: SGL Carbon SE
    Inventors: Wilhelm Frohs, Andreas Kienzle, Ingrid Krätschmer
  • Patent number: 8668865
    Abstract: Ceramic materials with a matrix which contains at least one carbide, at least one carbide-forming element and carbon, and which furthermore contain a dispersed phase of carbon particles with spherical shape and an average diameter of 0.2 ?m to 800 ?m, a process for their production and their use for thermal insulation, as a protective layer in ceramic armoring against mechanical action, or as a friction layer in brake disks or clutch disks.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: March 11, 2014
    Assignee: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Patent number: 8357320
    Abstract: A process for the impregnation of carbon fiber bundles enables the carbon fiber bundles to be impregnated with a curable liquid resin without the impregnated fiber bundles sticking together. The fiber bundles are present in a mechanically generated fluidized bed during the impregnation and are held in the fluidized bed until the resin has been cured or at least dried. A resin-impregnated carbon fiber bundle, a shaped body and an intermediate body for silicization are also provided.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: January 22, 2013
    Assignee: SGL Carbon SE
    Inventors: Andreas Kienzle, Ingrid Krätschmer
  • Patent number: 8193109
    Abstract: Ceramic materials with a matrix which contains at least one carbide, at least one carbide-forming element and carbon, and which furthermore contain a dispersed phase of carbon particles with spherical shape and an average diameter of 0.2 ?m to 800 ?m, a process for their production and their use for thermal insulation, as a protective layer in ceramic armoring against mechanical action, or as a friction layer in brake disks or clutch disks.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: June 5, 2012
    Assignee: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Patent number: 8136642
    Abstract: Carbon-ceramic brake disks that comprise several layers, whereby at least one layer is used as a bearing element and at least one layer acts as a friction layer, whereby the bearing element and at least one friction layer are separated by an intermediate layer, characterized in that the intermediate layer has reinforcement fibers in the form of fiber bundles, whereby the fiber bundles are encased by a layer that consists of a mixture of silicon carbide, silicon and carbon, which can be obtained by heat treatment of a mixture that consists of silicon powder and a carbonized resin or carbonized pitch at a temperature of 900° C. up to 1700° C. in an environment devoid of oxidizing agents. A process for their manufacture and use, in particular in automotive brake systems.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: March 20, 2012
    Assignee: Audi, AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20110082033
    Abstract: The present invention relates to a material including a matrix and at least one reinforcing element introduced therein, wherein the matrix is selected from the group consisting of plastic, carbon, ceramic, glass, clay, metal, and combinations thereof, and the reinforcing element is spherical to ellipsoidal in shape and has an onionskin-like structure. The present invention further relates to a method for producing a material including steps preparing at least one spherical to ellipsoidal reinforcing element having an onionskin-type structure, and introducing the reinforcing element into a matrix, wherein the matrix is selected from the group consisting of plastic, carbon, ceramic, glass, clay, metal, and combinations thereof. The present invention further relates to use of the material in a friction application, as abrasion protection, an injection moulding part, a support plate, catalyst substrate or as bone replacement material.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 7, 2011
    Inventors: Wilhelm Frohs, Andreas Kienzle, Ingrid Krätschmer
  • Publication number: 20090304567
    Abstract: Ceramic materials with a matrix which contains at least one carbide, at least one carbide-forming element and carbon, and which furthermore contain a dispersed phase of carbon particles with spherical shape and an average diameter of 0.2 ?m to 800 ?m, a process for their production and their use for thermal insulation, as a protective layer in ceramic armoring against mechanical action, or as a friction layer in brake disks or clutch disks.
    Type: Application
    Filed: August 20, 2009
    Publication date: December 10, 2009
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20080176067
    Abstract: A process is provided for producing shaped bodies including carbon fiber reinforced carbon in which the fibers are present in the form of bundles having a defined length, width and thickness. The defined configuration of the fibers in the bundles allows a targeted configuration of the reinforcing fibers in the carbon matrix and thus a structure of the reinforcement which matches the stress of shaped bodies including carbon fiber reinforced carbon, for example brake disks. A shaped body produced according to the invention is also provided.
    Type: Application
    Filed: April 11, 2007
    Publication date: July 24, 2008
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20080138578
    Abstract: A composition comprising polymer-bound fiber tows containing carbon fibers, the polymer-bound fiber tows having an average length of 3 mm to 50 mm measured in the fiber direction, and an average bundle thickness of 0.1 mm to 10 mm measured perpendicular to the fiber direction, and in which at least 75% of all polymer-bound fiber tows have a length that is at least 90% and not greater than 110% of the average length combined with a carbon-ceramic material.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 12, 2008
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20080125306
    Abstract: Ceramic materials with a matrix which contains at least one carbide, at least one carbide-forming element and carbon, and which furthermore contain a dispersed phase of carbon particles with spherical shape and an average diameter of 0.2 ?m to 800 ?m, a process for their production and their use for thermal insulation, as a protective layer in ceramic armoring against mechanical action, or as a friction layer in brake disks or clutch disks.
    Type: Application
    Filed: June 7, 2007
    Publication date: May 29, 2008
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20070284773
    Abstract: Method for manufacturing friction disks with ceramic materials with at least one friction layer, with a matrix containing silicon carbide, silicon and carbon, in the first step a mixture of a fine silicon and/or fine particles of other carbide-forming elements with at least one other component selected from a resin in particulate form and a binder selected from resins, pitches and mixtures of them, being prepared, in the second step, the mixture being deaerated and at an elevated temperature of up to 280° C. being pressed and hardened into a cylindrical or cylindrical annular disk, in the third step the hardened disk being treated by heating to a temperature of approx. 750° C. to approx. 1300° C.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 13, 2007
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20070237954
    Abstract: A process for the impregnation of carbon fiber bundles enables the carbon fiber bundles to be impregnated with a curable liquid resin without the impregnated fiber bundles sticking together. The fiber bundles are present in a mechanically generated fluidized bed during the impregnation and are held in the fluidized bed until the resin has been cured or at least dried. A resin-impregnated carbon fiber bundle, a shaped body and an intermediate body for silicization are also provided.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 11, 2007
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20070158150
    Abstract: Carbon-ceramic brake disks that comprise several layers, whereby at least one layer is used as a bearing element and at least one layer acts as a friction layer, whereby the bearing element and at least one friction layer are separated by an intermediate layer, characterized in that the intermediate layer has reinforcement fibers in the form of fiber bundles, whereby the fiber bundles are encased by a layer that consists of a mixture of silicon carbide, silicon and carbon, which can be obtained by heat treatment of a mixture that consists of silicon powder and a carbonized resin or carbonized pitch at a temperature of 900° C. up to 1700° C. in an environment devoid of oxidizing agents. A process for their manufacture and use, in particular in automotive brake systems.
    Type: Application
    Filed: October 31, 2006
    Publication date: July 12, 2007
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20060076699
    Abstract: A polymer-bonded fiber agglomerate includes short fibers selected from carbon, ceramic materials, glasses, metals and organic polymers, and a polymeric bonding resin selected from synthetic resins and thermoplastics. The fiber agglomerates have an average length, measured in the fiber direction, of from 3 mm to 50 mm and an average thickness, measured perpendicularly to the fiber direction, of from 0.1 mm to 10 mm. At least 75% of all of the contained fibers have a length which is at least 90% and not more than 110% of the fiber agglomerate average length. A fiber-reinforced composite material having the fiber agglomerate and processes for the production thereof are also provided.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 13, 2006
    Inventors: Peter Domagalski, Alfred Hausler, Ingrid Kratschmer, Andreas Kienzle, Dieter Wustner
  • Patent number: 6926127
    Abstract: Friction members are composed of a ceramic composite material. The friction members can be used for motor vehicles as a clutch disk for friction clutches, for transmitting motive power, or as a brake disk. A friction zone of the friction member is composed of ceramic, in particular of Si and SiC. A core zone of the friction member is made from fiber-reinforced C/SiC, in particular of long fiber woven fabric-reinforced and short fiber-reinforced C/SiC.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: August 9, 2005
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Michael Heine, Andreas Kienzle, Ingrid Krätschmer, Rainer Zimmermann-Chopin
  • Publication number: 20030106751
    Abstract: Friction members are composed of a ceramic composite material. The friction members can be used for motor vehicles as a clutch disk for friction clutches, for transmitting motive power, or as a brake disk. A friction zone of the friction member is composed of ceramic, in particular of Si and SiC. A core zone of the friction member is made from fiber-reinforced C/SiC, in particular of long fiber woven fabric-reinforced and short fiber-reinforced C/SiC.
    Type: Application
    Filed: November 25, 2002
    Publication date: June 12, 2003
    Inventors: Moritz Bauer, Michael Heine, Andreas Kienzle, Ingrid Kratschmer, Rainer Zimmermann-Chopin