Patents by Inventor Ioannis Tzanidis

Ioannis Tzanidis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879989
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of electronically steerable receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 23, 2024
    Assignee: Echodyne Corp.
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Patent number: 11515625
    Abstract: According to an embodiment, an antenna includes a conductive antenna element, a voltage-bias conductor, and a polarization-compensation conductor. The conductive antenna element is configured to radiate a first signal having a first polarization, and the voltage-bias conductor is coupled to a side of the antenna element and is configured to radiate a second signal having a second polarization that is different from the first polarization. And the polarization-compensating conductor is coupled to an opposite side of the antenna element and is configured to radiate third a signal having a third polarization that is approximately the same as the second polarization and that destructively interferes with the second signal. Such an antenna can be configured to reduce cross-polarization of the signals that its antenna elements radiate.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: November 29, 2022
    Assignee: Echodyne Corp.
    Inventors: Tom Driscoll, Nathan Ingle Landy, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Patent number: 11211716
    Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 28, 2021
    Assignee: Echodyne Corp.
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
  • Patent number: 11163037
    Abstract: An embodiment of an antenna array includes a transmit antenna and a receive antenna. The transmit antenna has, in one dimension, a first size, and has, in another dimension that is approximately orthogonal to the one dimension, a second size that is greater than the first size. And the receive antenna has, in approximately the one dimension, a third size that is greater than the first size, and has, in approximately the other dimension, a fourth size that is less than the second size. For example, such an antenna array, and a radar system that incorporates the antenna array, can provide a high Rayleigh resolution (i.e., a narrow Half Power Beam Width (HPBW)) with significantly reduced aliasing as compared to prior antenna arrays and radar systems for a given number of antenna-array channels.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: November 2, 2021
    Assignee: Echodyne Corp.
    Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Patent number: 11101572
    Abstract: In an embodiment, an antenna includes a one-dimensional array of antenna cells, a signal feed, and signal couplers. The antenna cells are each spaced from an adjacent antenna cell by less than one half a wavelength at which the antenna cells are configured to transmit and to receive, are configured to generate an array beam that is narrower in a dimension than in an orthogonal dimension, and are configured to steer the array beam in the dimension. And the signal couplers are each configured to couple a respective one of the antenna cells to the signal feed in response a respective control signal having an active level. For example, the antenna cells can be arranged such that a straight line intersects their geometric centers.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 24, 2021
    Assignee: Echodyne Corp.
    Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Publication number: 20200309900
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of electronically steerable receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Applicant: Echodyne Corp.
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Patent number: 10684354
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 16, 2020
    Assignee: Echodyne Corp.
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Patent number: 10559874
    Abstract: An electronic device according to various embodiments of the present invention may comprise: a body which is made of a conductive material and has both ends curvedly extending to be adjacent to each other so as to have a loop shape; a communication module arranged on the body; a feeding line which extends from the communication module and is arranged to cross a gap between both ends of the body; and at least one connection terminal for connecting the feeding line to the body, wherein the body can receive a feeding signal from the communication module through the feeding line, and transmit/receive a wireless signal. The above-mentioned electronic device can be implemented variously according to embodiments.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: February 11, 2020
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Ioannis Tzanidis, James Vandenheuvel, Mitchell Johnson, Zhouyue Pi
  • Publication number: 20190379133
    Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 12, 2019
    Applicant: Echodyne Corp.
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
  • Patent number: 10396468
    Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 27, 2019
    Assignee: Echodyne Corp
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
  • Publication number: 20190115651
    Abstract: According to an embodiment, an antenna includes a conductive antenna element, a voltage-bias conductor, and a polarization-compensation conductor. The conductive antenna element is configured to radiate a first signal having a first polarization, and the voltage-bias conductor is coupled to a side of the antenna element and is configured to radiate a second signal having a second polarization that is different from the first polarization. And the polarization-compensating conductor is coupled to an opposite side of the antenna element and is configured to radiate third a signal having a third polarization that is approximately the same as the second polarization and that destructively interferes with the second signal. Such an antenna can be configured to reduce cross-polarization of the signals that its antenna elements radiate.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Applicant: Echodyne Corp
    Inventors: Tom Driscoll, Nathan Ingle Landy, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Publication number: 20190074600
    Abstract: In an embodiment, an antenna includes a one-dimensional array of antenna cells, a signal feed, and signal couplers. The antenna cells are each spaced from an adjacent antenna cell by less than one half a wavelength at which the antenna cells are configured to transmit and to receive, are configured to generate an array beam that is narrower in a dimension than in an orthogonal dimension, and are configured to steer the array beam in the dimension. And the signal couplers are each configured to couple a respective one of the antenna cells to the signal feed in response a respective control signal having an active level. For example, the antenna cells can be arranged such that a straight line intersects their geometric centers.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 7, 2019
    Applicant: Echodyne Corp
    Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Publication number: 20180372837
    Abstract: An embodiment of an antenna array includes a transmit antenna and a receive antenna. The transmit antenna has, in one dimension, a first size, and has, in another dimension that is approximately orthogonal to the one dimension, a second size that is greater than the first size. And the receive antenna has, in approximately the one dimension, a third size that is greater than the first size, and has, in approximately the other dimension, a fourth size that is less than the second size. For example, such an antenna array, and a radar system that incorporates the antenna array, can provide a high Rayleigh resolution (i.e., a narrow Half Power Beam Width (HPBW)) with significantly reduced aliasing as compared to prior antenna arrays and radar systems for a given number of antenna-array channels.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 27, 2018
    Applicant: Echodyne Corp
    Inventors: Adam Bily, Tom Driscoll, John Desmond Hunt, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl
  • Patent number: 10014916
    Abstract: A method for operating a large scale antenna array in a wireless communication system includes receiving one or more signals. The one or more signals include information for beamforming to a plurality of user equipments (UEs) using a full-dimensional multiple-input multiple-output (FD-MIMO) beamforming scheme. The FD-MIMO beamforming scheme includes same time resources and same frequency resources that are co-scheduled to the plurality of UEs. The method further includes identifying a time delay of the one or more signals associated with one or more antenna arrays that are distributed in the large scale antenna array and performing a multi-user (MU) joint beamforming on the one or more signals to one or more UEs.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: July 3, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin Yuan, Yang Li, Young-Han Nam, Ioannis Tzanidis, Gang Xu, Md. Saifur Rahman, Yan Xin, Robert Monroe, Jianzhong Zhang, Eko Onggosanusi
  • Publication number: 20180156891
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Publication number: 20180054004
    Abstract: An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
    Type: Application
    Filed: August 18, 2016
    Publication date: February 22, 2018
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Ioannis Tzanidis, Robert Tilman Worl, Felix D. Yuen
  • Publication number: 20170207519
    Abstract: An electronic device according to various embodiments of the present invention may comprise: a body which is made of a conductive material and has both ends curvedly extending to be adjacent to each other so as to have a loop shape; a communication module arranged on the body; a feeding line which extends from the communication module and is arranged to cross a gap between both ends of the body; and at least one connection terminal for connecting the feeding line to the body, wherein the body can receive a feeding signal from the communication module through the feeding line, and transmit/receive a wireless signal. The above-mentioned electronic device can be implemented variously according to embodiments.
    Type: Application
    Filed: July 8, 2015
    Publication date: July 20, 2017
    Inventors: Ioannis TZANIDIS, James VANDENHEUVEL, Mitchell JOHNSON, Zhouyue PI
  • Patent number: 9584231
    Abstract: A base station (BS) capable of communication with a number of transmission points includes a processor configured to control a beamforming transmission or reception and an integrated antenna array system. The integrated antenna array system includes a baseband signal processing unit configured to perform baseband functions and disposed between the two sections. The integrated antenna array system also includes a plurality of physical antenna elements disposed in groups. Each of the groups includes an equal number of the plurality of physical antenna elements. The plurality of physical antenna elements are disposed symmetrically around the baseband signal processing unit.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: February 28, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gang Xu, Robert Monroe, Ioannis Tzanidis, Jianzhong Zhang, Yang Li, Jin Yuan, Eko Onggosanusi
  • Patent number: 9391370
    Abstract: A transmitter includes apparatus for integrating the antenna feed into a multilayer PCB. The apparatus includes an antenna element disposed over the multilayer PCB having slot openings that substantially overlap and that enable an RF signal to be coupled from a printed transmission line located on one of the multilayer PCB conductive layers. The multilayer PCB board hosts at least one transceiver unit and a baseband unit such that the antenna feed, transceiver and baseband units are integrated on a single multilayer PCB board without degradation of antenna bandwidth and efficiency.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: July 12, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ioannis Tzanidis, Robert Monroe
  • Publication number: 20160135180
    Abstract: A method for operating a large scale antenna array in a wireless communication system includes receiving one or more signals. The one or more signals include information for beamforming to a plurality of user equipments (UEs) using a full-dimensional multiple-input multiple-output (FD-MIMO) beamforming scheme. The FD-MIMO beamforming scheme includes same time resources and same frequency resources that are co-scheduled to the plurality of UEs. The method further includes identifying a time delay of the one or more signals associated with one or more antenna arrays that are distributed in the large scale antenna array and performing a multi-user (MU) joint beamforming on the one or more signals to one or more UEs.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 12, 2016
    Inventors: Jin Yuan, Yang Li, Young-Han Nam, Ioannis Tzanidis, Gang Xu, Md. Saifur Rahman, Yan Xin, Robert Monroe, Jianzhong Zhang, Eko Onggosanusi