Patents by Inventor Iolanda Santana KLEIN

Iolanda Santana KLEIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120532
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
    Type: Application
    Filed: June 7, 2023
    Publication date: April 11, 2024
    Inventors: Charles Austen ANGELL, Iolanda Santana KLEIN, Telpriore Greg TUCKER
  • Patent number: 11695153
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: July 4, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Iolanda Santana Klein, Telpriore Greg Tucker
  • Publication number: 20220123360
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
    Type: Application
    Filed: August 16, 2021
    Publication date: April 21, 2022
    Inventors: Charles Austen Angell, Iolanda Santana Klein, Telpriore Greg Tucker
  • Patent number: 11094963
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: August 17, 2021
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Charles Austen Angell, Iolanda Santana Klein, Telpriore Greg Tucker
  • Publication number: 20210143082
    Abstract: A thermal interface material may be formed comprising a plastic crystal matrix, such as succinonitrile, adamantane, glutaronitrile, and mixtures thereof, and a thermally conductive filler material dispersed within the plastic crystal matrix. The thermal interface material may be used in an integrated circuit assembly to facilitate heat transfer between at least one integrated circuit device and a heat dissipation device.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 13, 2021
    Applicant: Intel Corporation
    Inventors: Shushan Gong, Iolanda Santana Klein, Marely Estefania Tejeda Ferrari
  • Publication number: 20200112057
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 9, 2020
    Inventors: Charles Austen Angell, Iolanda Santana Klein, Telpriore Greg Tucker
  • Patent number: 10497970
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid. The phenylsilane includes at least one C1-C3 alkyl substituent or at least one C1-C3 alkoxy substituent, and the first acid includes at least one of sulfuric acid, selenic acid, and telluric acid.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 3, 2019
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Charles Austen Angell, Iolanda Santana Klein, Telpriore Greg Tucker
  • Patent number: 10490847
    Abstract: Inorganic plastic crystal electrolytes, also referred to herein as inorganic plastic crystal conductors or single ion conductors including [ABx-yCy]y?[M]y+, where A is a tetravalent to hexavalent atom; B is a monovalent ligand; C is an oxyanion; M is an alkali metal; x is 4 when A is tetravalent, x is 5 when A is pentavalent, and x is 6 when A is hexavalent; y is an integer from 1 to x?1 inclusive. [ABx-yCy]y?[M]y+ is rotationally disordered and ionically conductive.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 26, 2019
    Assignee: Arizona Board of Regents, a Body Corporate of the State of Arizona Acting for and on Behalf of Arizona State University
    Inventors: C. Austen Angell, Iolanda Santana Klein, Telpriore Greg Tucker
  • Publication number: 20190020060
    Abstract: A solid electrolyte represented by general formula LiySiRx(MO4), where x is an integer from 1 to 3 inclusive, y=4?x, each R present is independently C1-C3 alkyl or C1-C3 alkoxy, and M is sulfur, selenium, or tellurium. Methods of making the solid electrolyte include combining a phenylsilane and a first acid to yield mixture including benzene and a second acid, and combining at least one of an alkali halide, and alkali amide, and an alkali alkoxide with the second acid to yield a product d represented by general formula LiySiRx(MO4)y. The second acid may be in the form of a liquid or a solid.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 17, 2019
    Inventors: Charles Austen Angell, Iolanda Santana Klein, Telpriore Greg Tucker
  • Publication number: 20180131027
    Abstract: A solid electrolyte includes an amorphous silica network and phosphoric acid. The phosphoric acid is contained in the amorphous silica network, and is typically in molecular form. The ratio of silicon to phosphorus in the solid electrolyte is about 1:4, and the silicon is in a four-coordinated state. The solid electrolyte is in the form of a dried (e.g., anhydrous) gel. The solid electrolyte may be used in a fuel cell membrane. Preparing the solid electrolyte includes reacting phosphoric acid in the liquid state with tetrachloride compound including silicon and a displaceable ligand to yield a fluid suspension, heating the fluid suspension to yield a liquid electrolyte comprising a particulate solid, separating the particulate solid from the liquid electrolyte, combining the particulate solid with water to yield a homogenous solution, forming a gel from the homogeneous solution, and removing water from the gel to yield the solid electrolyte.
    Type: Application
    Filed: May 26, 2016
    Publication date: May 10, 2018
    Inventors: Charles Austen Angell, Younes Ansari, Telpriore Greg Tucker, Iolanda Santana Klein
  • Publication number: 20160043431
    Abstract: Inorganic plastic crystal electrolytes, also referred to herein as inorganic plastic crystal conductors or single ion conductors including [ABx-yCy]y?[M]y+, where A is a tetravalent to hexavalent atom; B is a monovalent ligand; C is an oxyanion; M is an alkali metal; x is 4 when A is tetravalent, x is 5 when A is pentavalent, and x is 6 when A is hexavalent; y is an integer from 1 to x?1 inclusive. [ABx-yCy]y?[M]y+ is rotationally disordered and electrically conductive.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 11, 2016
    Inventors: C. Austen ANGELL, Iolanda Santana KLEIN, Telpriore Greg TUCKER