Patents by Inventor Ionut Iordache

Ionut Iordache has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9719801
    Abstract: Example methods and systems for calibrating sensors using road map data are provided. An autonomous vehicle may use various vehicle sensors to assist in navigation. Within examples, the autonomous vehicle may calibrate vehicle sensors through performing a comparison or analysis between information about the environment received by sensors with similar information provided by map data (e.g., a road map). The autonomous vehicle may compare object locations as provided by the sensors and as shown by map data. Based on the comparison, the autonomous vehicle may adjust various sensors to accurately reflect the information as provided by the road map. In some instances, the autonomous vehicle may adjust the position, height, orientation, direction-of-focus, scaling, or other parameters of a sensor based on the information provided by a road map.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: August 1, 2017
    Assignee: Waymo LLC
    Inventors: Dave Ferguson, Dorel Ionut Iordache
  • Publication number: 20170176597
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 22, 2017
    Inventors: Daniel Gruver, Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zachary Morriss, Luke Wachter, Dorel Ionut Iordache, Rahim Pardhan, William McCann, Bernard Fidric, Samuel William Lenius
  • Patent number: 9625582
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 18, 2017
    Assignee: Google Inc.
    Inventors: Daniel Gruver, Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zachary Morriss, Luke Wachter, Dorel Ionut Iordache, Rahim Pardhan, William McCann, Bernard Fidric, Samuel William Lenius
  • Publication number: 20160282468
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: Daniel Gruver, Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zachary Morriss, Luke Wachter, Dorel Ionut Iordache, Rahim Pardhan, William McCann, Bernard Fidric, Samuel William Lenius
  • Patent number: 9086273
    Abstract: A LIDAR device may transmit light pulses originating from one or more light sources and may receive reflected light pulses that are detected by one or more detectors. The LIDAR device may include a lens that both (i) collimates the light from the one or more light sources to provide collimated light for transmission into an environment of the LIDAR device and (ii) focuses the reflected light onto the one or more detectors. Each light source may include a respective laser diode and cylindrical lens. The laser diode may emit an uncollimated laser beam that diverges more in a first direction than in a second direction. The cylindrical lens may pre-collimate the uncollimated laser beam in the first direction to provide a partially collimated laser that diverges more in the second direction than in the first direction.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: July 21, 2015
    Assignee: Google Inc.
    Inventors: Daniel Gruver, Pierre-Yves Droz, Gaetan Pennecot, Zachary Morriss, Dorel Ionut Iordache
  • Patent number: 9080866
    Abstract: Example methods and systems for detecting reflective markers at long range are provided. An example method includes receiving laser data collected from successive scans of an environment of a vehicle. The method also includes determining a respective size of the one or more objects based on the laser data collected from respective successive scans. The method may further include determining, by a computing device and based at least in part on the respective size of the one or more objects for the respective successive scans, an object that exhibits a change in size as a function of distance from the vehicle. The method may also include determining that the object is representative of a reflective marker. In one example, a computing device may use the detection of one reflective marker to help detect subsequent reflective markers that may be in a similar position.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: July 14, 2015
    Assignee: Google Inc.
    Inventors: Jonathan Baldwin Dowdall, Jiajun Zhu, Pierre-yves Droz, Luke Wachter, Dorel Ionut Iordache