Patents by Inventor Irene Petrov

Irene Petrov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130709
    Abstract: Apparatus and methods are described for ultrasound guided optoacoustic monitoring to provide diagnostic information for many clinical applications of blood oxygenation in blood vessels and in tissues including for early diagnosis and management of circulatory shock (including that induced by hemorrhage). In certain embodiments provided herein, methods and apparatus for optoacoustics for measurement of blood oxygenation in the innominate vein are provided. In certain embodiments provided herein, are methods and apparatus for articulating an angle between an ultrasound probe and subject body to identify an optimum position for an optoacoustic probe to measure blood oxygenation in a target blood vessel or tissue.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 25, 2024
    Inventors: DONALD S. PROUGH, III, YURIY PETROV, CHARLES HOUSSIERE, IRENE PETROV, TRIS MILLER
  • Publication number: 20230233088
    Abstract: The systems, devices, and methods herein make optoacoustic measurements and correct or normalize them for variations in optical energy level of the different light pulses used. An optical source directs optical pulses to tissue, an optical energy meter measures the optical energy of the different optical pulses, an acoustic detector measures an acoustic response generated by the tissue in response to the optical pulses, and a processor calculates a concentration of an analyte based on the measured acoustic response and as corrected or normalized for the different energy levels among the optical pulses.
    Type: Application
    Filed: March 21, 2023
    Publication date: July 27, 2023
    Inventors: Rinat ESENALIEV, Irene Petrov, Yuriy Petrov
  • Patent number: 11638611
    Abstract: In one embodiment, a system for locating a tip of a catheter that has been inserted into a patient includes an implantable catheter having a distal tip, a pulsed light source that is co-located with the distal tip of the implantable catheter, the pulsed light source being configured to emit pulses of light into surrounding patient tissue, an optoacoustic sensor configured to be applied so a skin surface of the patient at a position proximate to the pulsed light source and to sense optoacoustic waves generated when the pulses of light are absorbed by the surrounding patient tissue, and an optoacoustic console configured to receive optoacoustic wave signals from the optoacoustic sensor and to display an indication of the optoacoustic wave signals to a medical professional to provide an indication of the location of the pulsed light source and, therefore, the distal tip of the implantable catheter.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 2, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Rovnat Babazade, Yuriy Petrov, Irene Petrov, Rinat O. Esenaliev
  • Patent number: 11045121
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 29, 2021
    Assignee: Noninvasix, Inc.
    Inventors: Rinat Esenaliev, Donald S. Prough, Yuriy Petrov, Irene Petrov, George Saade, Gayle L. Olson, Tommy G. Cooper
  • Publication number: 20200345985
    Abstract: In one embodiment, a system for locating a tip of a catheter that has been inserted into a patient includes an implantable catheter having a distal tip, a pulsed light source that is co-located with the distal tip of the implantable catheter, the pulsed light source being configured to emit pulses of light into surrounding patient tissue, an optoacoustic sensor configured to be applied so a skin surface of the patient at a position proximate to the pulsed light source and to sense optoacoustic waves generated when the pulses of light are absorbed by the surrounding patient tissue, and an optoacoustic console configured to receive optoacoustic wave signals from the optoacoustic sensor and to display an indication of the optoacoustic wave signals to a medical professional to provide an indication of the location of the pulsed light source and, therefore, the distal tip of the implantable catheter.
    Type: Application
    Filed: May 3, 2019
    Publication date: November 5, 2020
    Applicant: Board of Regents, The University of Texas System
    Inventors: Rovnat Babazade, Yuriy Petrov, Irene Petrov, Rinat O. Esenaliev
  • Publication number: 20200337781
    Abstract: In one embodiment, a system for locating a tip of a catheter that has been inserted into a patient includes an implantable catheter having a distal tip, a pulsed light source that is co-located with the distal tip of the implantable catheter, the pulsed light source being configured to emit pulses of light into surrounding patient tissue, an optoacoustic sensor configured to be applied so a skin surface of the patient at a position proximate to the pulsed light source and to sense optoacoustic waves generated when the pulses of light are absorbed by the surrounding patient tissue, and an optoacoustic console configured to receive optoacoustic wave signals from the optoacoustic sensor and to display an indication of the optoacoustic wave signals to a medical professional to provide an indication of the location of the pulsed light source and, therefore, the distal tip of the implantable catheter.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 29, 2020
    Applicant: Board of Regents, The University of Texas System
    Inventors: Rovnat Babazade, Yuriy Petrov, Irene Petrov, Rinat O. Esenaliev
  • Publication number: 20190216376
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 18, 2019
    Inventors: Rinat ESENALIEV, Donald S. PROUGH, Yuriy PETROV, Irene PETROV, George SAADE, Gayle L. OLSON, Tommy G. COOPER
  • Patent number: 10307088
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: June 4, 2019
    Assignee: The Board of Regents of the University of Texas
    Inventors: Rinat Esenaliev, Donald S. Prough, Yuriy Petrov, Irene Petrov, George Saade, Gayle L. Olson
  • Patent number: 10231656
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: March 19, 2019
    Assignees: Noninvasix, Inc., The Board of Regents of The University of Texas
    Inventors: Rinat Esenaliev, Donald S. Prough, Yuriy Petrov, Irene Petrov, George Saade, Gayle L. Olson, Tommy G. Cooper
  • Patent number: 10206607
    Abstract: Medical apparatus are disclosed for optoacoustic monitoring of an indwelling unit of the apparatus, where the indwelling unit includes one or more optical components capable of directing pulsed light into an overlying tissue. The apparatus also include one or more acoustic components in contact with an exterior surface of the tissue to detect induced pressure waves producing an acoustic output analyzed with an optoacoustic unit to monitor and confirm proper placement of the indwelling unit. Methods for using the apparatus are also disclosed.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: February 19, 2019
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Donald S. Prough, Rinat O. Esenaliev, Yuriy Petrov, Irene Petrov
  • Patent number: 9380967
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: July 5, 2016
    Assignee: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Rinat Esenaliev, Donald S. Prough, Yuriy Petrov, Irene Petrov, George Saade, Gayle L. Olson
  • Publication number: 20160015304
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 21, 2016
    Inventors: Rinat ESENALIEV, Donald S. PROUGH, Yuriy PETROV, Irene PETROV, George SAADE, Gayle L. OLSON, Tommy G. COOPER
  • Publication number: 20160007895
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 14, 2016
    Inventors: Rinat ESENALIEV, Donald S. PROUGH, Yuriy PETROV, Irene PETROV, George SAADE, Gayle L. OLSON
  • Publication number: 20160007892
    Abstract: Optoacoustic diagnostic systems, devices, and methods are described. A system may comprise a console unit and a handheld probe. The console unit comprises a controller, a processor, a photodiode array, an acoustic processing subsystem, and a cooling subsystem. The probe directs light signals from the photodiode array to patient tissue. The light signals each have different wavelengths selected based on the physiological parameter of interest. The probe further comprises an acoustic transducer that receives acoustic signals generated in response to the directed light signals. The probe may comprise a finger-held working end that can be directed to the skull of a fetus within the uterus during labor. The probe can then accurately determine blood oxygenation of the fetus to determine if a caesarian section is necessary.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 14, 2016
    Inventors: Rinat ESENALIEV, Donald S. PROUGH, Yuriy PETROV, Irene PETROV, George SAADE, Gayle L. OLSON
  • Publication number: 20140058253
    Abstract: Medical apparatus are disclosed for optoacoustic monitoring of an indwelling unit of the apparatus, where the indwelling unit includes one or more optical components capable of directing pulsed light into an overlying tissue. The apparatus also include one or more acoustic components in contact with an exterior surface of the tissue to detect induced pressure waves producing an acoustic output analyzed with an optoacoustic unit to monitor and confirm proper placement of the indwelling unit. Methods for using the apparatus are also disclosed.
    Type: Application
    Filed: April 30, 2012
    Publication date: February 27, 2014
    Applicant: BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Donald S. Prough, Rinat O. Esenaliev, Yuriy Petrov, Irene Petrov
  • Publication number: 20120203101
    Abstract: Indwelling medical apparatus including one optoacoustic discernible member or a plurality of optoacoustic discernible members and methods for optoacoustic guidance and confirmation of placement of optoacoustically discernible indwelling medical apparatus.
    Type: Application
    Filed: July 9, 2011
    Publication date: August 9, 2012
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Donald S. Prough, Rinat O. Esenaliev, Daneshvari R. Solanki, Michael Kinsky, Yuriy Petrov, Irene Petrov