Patents by Inventor Irene Spitsberg

Irene Spitsberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060019119
    Abstract: A reduced thermal conductivity thermal barrier coating having improved impact resistance for an underlying substrate of articles that operate at, or are exposed to, high temperatures. This coating comprises an inner high fracture toughness layer nearest to the underlying substrate and having a thickness up to about 5 mils (127 microns) sufficient to impart impact resistance to the thermal barrier coating, and comprises a zirconia-containing ceramic composition having a c/a ratio of the zirconia lattice in the range of from about 1.011 to about 1.016 and stabilized in the tetragonal phase by a stabilizing amount of a stabilizing metal oxide selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india, lanthana, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, and mixtures thereof.
    Type: Application
    Filed: July 26, 2004
    Publication date: January 26, 2006
    Inventors: Irene Spitsberg, Brett Boutwell, Robert Bruce
  • Patent number: 6982126
    Abstract: A thermal barrier coating (TBC) for a component intended for use in a hostile thermal environment. The TBC has an interior region and an outer surface region on and contacting the interior region. Both regions are formed of a ceramic material, with the interior region having a lower thermal conductivity than zirconia partially stabilized by about seven weight percent yttria. The interior region constitutes more than half of the thickness of the TBC, and the outer surface region constitutes less than half of the thickness of the TBC. The TBC has a columnar microstructure whereby the interior region and the outer surface region comprise columns of their ceramic materials. The outer surface region is more erosion and impact resistant than the interior region at least in part as a result of the columns thereof being more closely spaced than the columns of the interior region.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: January 3, 2006
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Allen Rohrer Boutwell, Mark Daniel Gorman, Curtis Alan Johnson, Venkat Subramaniam Venkataramani
  • Patent number: 6974637
    Abstract: An article and TBC coating system thereon that in combination exhibit significantly improved spallation resistance. The article comprises a substrate formed of a metal alloy containing ruthenium and one or more refractory elements (e.g., tantalum, tungsten, molybdenum, rhenium, hafnium, etc.). The substrate is protected by a coating system comprising an aluminum-containing bond coat on the surface of the substrate and a ceramic coating bonded to the substrate by the bond coat. The bond coat, preferably an aluminide, is deposited so as to be substantially free of ruthenium, though ruthenium is present in the bond coat as a result of diffusion from the substrate into the bond coat.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: December 13, 2005
    Assignee: General Electric Company
    Inventors: Jeffrey Allan Pfaendtner, Deborah A. Schorr, Ramgopal Darolia, Joseph David Rigney, Irene Spitsberg, William Scott Walston
  • Patent number: 6960395
    Abstract: Ceramic compositions comprising at least about 91 mole % zirconia and up to about 9 mole % of a stabilizer component comprising a first metal oxide having selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india and mixtures thereof. This stabilizer component further comprises a second metal oxide of a trivalent metal atom selected from the group consisting of lanthana, gadolinia, neodymia, samaria, dysprosium, and mixtures thereof and a third metal oxide of a trivalent metal atom selected from the group consisting of erbia, ytterbia and mixtures thereof. These ceramic compositions are useful in preparing thermal barrier coatings having reduced thermal conductivity for the metal substrate of articles that operate at, or are exposed to, high temperatures.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: November 1, 2005
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Venkat Subramanian Venkataramani, Brett Allen Boutwell, Mark Daniel Gorman
  • Publication number: 20050238888
    Abstract: A protective coating for use on a silicon-containing substrate, and deposition methods therefor. The coating has a barium-strontium-aluminosilicate (BSAS) composition that is less susceptible to degradation by volatilization and in corrosive environments as a result of having at least an outer surface region that consists essentially of one or more stoichiometric crystalline phases of BSAS and is substantially free of a nonstoichiometric second crystalline phase of BSAS that contains a substoichiometric amount of silica. The coating can be produced by carrying out deposition and heat treatment steps that result in the entire coating or just the outer surface region of the coating consisting essentially of the stoichiometric celsian phase.
    Type: Application
    Filed: April 27, 2004
    Publication date: October 27, 2005
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Irene Spitsberg, Brian Hazel, Christine Govern
  • Publication number: 20050238894
    Abstract: Ceramic compositions comprising a main ceramic component comprising from about 63 to about 99 mole % zirconia and from about 1 to about 37 mole % hafnia. These compositions further comprise at least about 4 mole % of a stabilizer metal oxide selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india, lanthana, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, and mixtures thereof. These ceramic compositions are useful in preparing thermal barrier coatings having reduced thermal conductivity for the substrate of articles that operate at, or are exposed to, high temperatures, as well as good producibility and impact/erosion resistance. Inclusion of hafnia also maintains the reduced conductivity of the thermal barrier coating after thermal exposure due to better sintering resistance.
    Type: Application
    Filed: April 22, 2004
    Publication date: October 27, 2005
    Inventors: Mark Gorman, Irene Spitsberg, Brett Boutwell, Ramgopal Darolia, Robert Bruce, Venkat Venkataramani
  • Publication number: 20050202168
    Abstract: A thermal barrier coating (TBC 26) and method for forming the TBC (26) on a component (10) characterized by a stabilized microstructure that resists grain growth, sintering and pore coarsening or coalescence during high temperature excursions. The TBC (26) contains elemental carbon and/or a carbon-containing gas that increase the amount of porosity (32) initially within the TBC (26) and form additional fine closed porosity (32) within the TBC (26) during subsequent exposures to high temperatures. A first method involves incorporating elemental carbon precipitates by evaporation into the TBC microstructure. A second method is to directly incorporate an insoluble gas, such as a carbon-containing gas, into an as-deposited TBC (26) and then partially sinter the TBC (26) to entrap the gas and produce fine stable porosity within the TBC (26).
    Type: Application
    Filed: August 11, 2004
    Publication date: September 15, 2005
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Boris Movchan, Yuriy Rudoy, Leonella Nerodenko, Ramgopal Darolia, Irene Spitsberg, Anthony Thompson, David Wortman, Curtis Johnson
  • Patent number: 6916561
    Abstract: A reduced thermal conductivity thermal barrier coating having improved impact and erosion resistance for an underlying metal substrate of articles that operate at, or are exposed to, high temperatures. This coating comprises a zirconia-containing ceramic composition having a c/a ratio in the range of from about 1.0057 to about 1.0123 and stabilized in the tetragonal phase by a stabilizing amount of a stabilizing metal oxide. The coating has a fraction of porosity of from about 0.15 to about 0.25, and an impact and erosion resistance property defined by at least one of the following formulas: (a) I=exp. [5.85?(144×s)?(3.68×p)]; and/or; (b) E=[187?(261×p)?(9989×s)], wherein s=1.0117?c/a ratio; p is the fraction of porosity; I is least about 70 g/mil; and E is least about 80 g/mil. This coating can be used to provide a thermally protected article having a metal substrate and optionally a bond coat layer adjacent to and overlaying the metal substrate.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: July 12, 2005
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Brett Allen Boutwell
  • Publication number: 20050147840
    Abstract: A thermal barrier coating system having an improved life as a result of a preoxidation treatment applied to a single phase platinum aluminide bond coat. After coating the substrate to form a diffusion platinum aluminum bond coat, the surface finish of the bond coat was grit blasted with an inert grit of preselected size at a preselected pressure to achieve a predetermined surface finish. After the grit blasting, but before application of the ceramic top coat of yttria-stabilized zirconia (YSZ), the coating was preoxidized to form a thin alumina scale by heat treating the diffusion platinum aluminide bond coat at an elevated temperature at a preselected partial pressure of oxygen.
    Type: Application
    Filed: November 24, 2004
    Publication date: July 7, 2005
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Irene Spitsberg
  • Publication number: 20050142392
    Abstract: Ceramic compositions comprising at least about 91 mole % zirconia and up to about 9 mole % of a stabilizer component comprising a first metal oxide having selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india and mixtures thereof. This stabilizer component further comprises a second metal oxide of a trivalent metal atom selected from the group consisting of lanthana, gadolinia, neodymia, samaria, dysprosium, and mixtures thereof and a third metal oxide of a trivalent metal atom selected from the group consisting of erbia, ytterbia and mixtures thereof. These ceramic compositions are useful in preparing thermal barrier coatings having reduced thermal conductivity for the metal substrate of articles that operate at, or are exposed to, high temperatures.
    Type: Application
    Filed: December 30, 2003
    Publication date: June 30, 2005
    Inventors: Irene Spitsberg, Venkat Venkataramani, Brett Boutwell, Mark Gorman
  • Publication number: 20050142393
    Abstract: Zirconia-containing ceramic compositions that are capable of providing thermal barrier coatings wherein the zirconia is stabilized in the cubic crystalline phase. These compositions comprise at least about 50 mole % zirconia and a stabilizing amount up to about 49 mole % of a stabilizer component comprising: (1) a first metal oxide selected from the group consisting of ytterbia, neodymia, mixtures of ytterbia and neodymia, mixtures of ytterbia and lanthana, mixtures of neodymia and lanthana, and mixtures of ytterbia, neodymia and lanthana in an amount of from about 5 to about 49 mole % of the composition; and (2) a second metal oxide selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india and mixtures thereof in an amount of about 4 mole % or less of the composition. The ceramic composition further comprises one or more of a third metal oxide selected from the group consisting of: (a) hafnia in an amount from about 0.
    Type: Application
    Filed: December 30, 2003
    Publication date: June 30, 2005
    Inventors: Brett Boutwell, Mark Gorman, Irene Spitsberg, Ramgopal Darolia, Robert Bruce, Venkat Venkataramani
  • Publication number: 20050142395
    Abstract: Ceramic compositions comprising at least about 91 mole % zirconia and up to about 9 mole % of a stabilizer component comprising a first metal oxide having selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india and mixtures thereof. This stabilizer component further comprises a second metal oxide of a trivalent metal atom selected from the group consisting of lanthana, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, and mixtures thereof. These ceramic compositions are useful in preparing thermal barrier coatings having reduced thermal conductivity for the metal substrate of articles that operate at, or are exposed to, high temperatures.
    Type: Application
    Filed: December 30, 2003
    Publication date: June 30, 2005
    Inventors: Irene Spitsberg, Venkat Venkataramani, Brett Boutwell, Mark Gorman, Robert Bruce
  • Publication number: 20050142394
    Abstract: A reduced thermal conductivity thermal barrier coating having improved impact and erosion resistance for an underlying metal substrate of articles that operate at, or are exposed to, high temperatures. This coating comprises a zirconia-containing ceramic composition having a c/a ratio in the range of from about 1.0057 to about 1.0123 and stabilized in the tetragonal phase by a stabilizing amount of a stabilizing metal oxide. The coating has a fraction of porosity of from about 0.15 to about 0.25, and an impact and erosion resistance property defined by at least one of the following formulas: (a) I=exp. [5.85?(144×s)?(3.68×p)]; and/or; (b) E=[187?(261×p)?(9989×s)], wherein s=1.0117?c/a ratio; p is the fraction of porosity; I is least about 70 g/mil; and E is least about 80 g/mil. This coating can be used to provide a thermally protected article having a metal substrate and optionally a bond coat layer adjacent to and overlaying the metal substrate.
    Type: Application
    Filed: December 30, 2003
    Publication date: June 30, 2005
    Inventors: Irene Spitsberg, Brett Boutwell
  • Publication number: 20050136283
    Abstract: An article and TBC coating system thereon that in combination exhibit significantly improved spallation resistance. The article comprises a substrate formed of a metal alloy containing ruthenium and one or more refractory elements (e.g., tantalum, tungsten, molybdenum, rhenium, hafnium, etc.). The substrate is protected by a coating system comprising an aluminum-containing bond coat on the surface of the substrate and a ceramic coating bonded to the substrate by the bond coat. The bond coat, preferably an aluminide, is deposited so as to be substantially free of ruthenium, though ruthenium is present in the bond coat as a result of diffusion from the substrate into the bond coat.
    Type: Application
    Filed: December 19, 2003
    Publication date: June 23, 2005
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jeffrey Pfaendtner, Deborah Schorr, Ramgopal Darolia, Joseph Rigney, Irene Spitsberg, William Walston
  • Publication number: 20050126494
    Abstract: A process and apparatus for depositing a ceramic coating, such as a thermal barrier coating (TBC) for a gas turbine engine component. The process deposits a coating whose composition includes multiple oxide compounds and a carbon-based constituent, e.g., elemental carbon, carbides, and carbon-based gases. The process uses at least one evaporation source to provide multiple different oxide compounds and at least one carbide compound comprising carbon and an element. The evaporation source is evaporated to produce a vapor cloud that contacts and condenses on the component surface to form the ceramic coating, and particularly so that the coating comprises the oxide compounds, an oxide of the element of the carbide compound, and the carbide compound and/or a carbon-containing gas. The process is carried out with an apparatus comprising a coating chamber in which the evaporation source is present, and a device for evaporating the evaporation source.
    Type: Application
    Filed: December 16, 2003
    Publication date: June 16, 2005
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Boutwell
  • Publication number: 20050129849
    Abstract: A protected article is prepared by depositing a bond coat onto an exposed surface of the article; and producing a thermal barrier coating on an exposed surface of the bond coat. The thermal barrier coating is produced by depositing a primary ceramic coating onto an exposed surface of the bond coat, depositing a cerium-oxide-precursor compound onto an exposed surface of the primary ceramic coating, and heating the cerium-oxide-precursor compound in an oxygen-containing atmosphere to form cerium oxide adjacent to the exposed surface of the primary ceramic coating.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Applicant: General Electric Company
    Inventors: John Ackerman, Venkat Venkataramani, Irene Spitsberg, Brett Boutwell, Ramgopal Darolia
  • Publication number: 20050129869
    Abstract: A protected article is prepared by providing the article, depositing a bond coat onto an exposed surface of the article, and producing a thermal barrier coating on an exposed surface of the bond coat. The step of producing the thermal barrier coating includes the steps of depositing a primary ceramic coating onto an exposed surface of the bond coat, and depositing a stabilization composition onto an exposed surface of the primary ceramic coating. The stabilization composition includes a first element selected from Group 2 or Group 3 of the periodic table, and a second element selected from Group 5 of the periodic table. The atomic ratio of the amount of the first element to the amount of the second element is at least 1:3, more preferably at least 1:1.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Applicant: General Electric Company
    Inventors: John Ackerman, Venkat Venkataramani, Irene Spitsberg, Brett Boutwell, Ramgopal Darolia
  • Publication number: 20050112412
    Abstract: A thermal barrier coating (TBC) for a component intended for use in a hostile thermal environment. The TBC has an interior region and an outer surface region on and contacting the interior region. Both regions are formed of a ceramic material, with the interior region having a lower thermal conductivity than zirconia partially stabilized by about seven weight percent yttria. The interior region constitutes more than half of the thickness of the TBC, and the outer surface region constitutes less than half of the thickness of the TBC. The TBC has a columnar microstructure whereby the interior region and the outer surface region comprise columns of their ceramic materials. The outer surface region is more erosion and impact resistant than the interior region at least in part as a result of the columns thereof being more closely spaced than the columns of the interior region.
    Type: Application
    Filed: November 26, 2003
    Publication date: May 26, 2005
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Boutwell, Mark Gorman, Curtis Johnson, Venkat Venkataramani
  • Patent number: 6887595
    Abstract: A thermal barrier coatings for the underlying substrate of articles that operate at, or are exposed to, high temperatures. The thermal barrier coating includes a zirconia-containing upper layer wherein the zirconia is stabilized in the cubic crystalline phase to reduce the thermal conductivity of the coating. The thermal barrier coating further includes a zirconia-containing lower layer stabilized in the tetragonal crystalline phase that increases the adherence of the upper layer to the bond coat layer that overlies the substrate of the article to improve the resistance of the coating to spallation.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: May 3, 2005
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Allen Boutwell, Mark Daniel Gorman, Robert William Bruce
  • Patent number: 6887589
    Abstract: A beta-phase NiAl overlay coating containing a dispersion of ceramic particles and a process for depositing the overlay coating. If the coating is used to adhere a thermal barrier coating (TBC), the TBC exhibits improved spallation resistance as a result of the dispersion of ceramic particles having a dispersion-strengthening effect on the overlay coating. The overlay coating contains at least one reactive element and is deposited so that the some of the reactive element deposits as the ceramic particles dispersed in the overlay coating.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: May 3, 2005
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney, William Scott Walston, Jeffrey Allan Pfaendtner, Brett Allen Rohrer Boutwell, Irene Spitsberg, James Anthony Ruud