Patents by Inventor Irina BALAKO

Irina BALAKO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11556682
    Abstract: A method for producing bone grafts using 3-D printing is employed using a 3-D image of a graft location to produce a 3-D model of the graft. This is printed using a 3-D printer and a printing medium that produces a porous, biocompatible, biodegradable material that is conducive to osteoinduction. For example, the printing medium may be PCL, PLLA, PGLA, or another approved biocompatible polymer. In addition such a method may be useful for cosmetic surgeries, reconstructive surgeries, and various techniques required by such procedures. Once the graft is placed, natural bone gradually replaces the graft.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: January 17, 2023
    Inventors: Arthur Greyf, Irina Balako
  • Publication number: 20200167514
    Abstract: A method for producing bone grafts using 3-D printing is employed using a 3-D image of a graft location to produce a 3-D model of the graft. This is printed using a 3-D printer and a printing medium that produces a porous, biocompatible, biodegradable material that is conducive to osteoinduction. For example, the printing medium may be PCL, PLLA, PGLA, or another approved biocompatible polymer. In addition such a method may be useful for cosmetic surgeries, reconstructive surgeries, and various techniques required by such procedures. Once the graft is placed, natural bone gradually replaces the graft.
    Type: Application
    Filed: January 20, 2020
    Publication date: May 28, 2020
    Inventors: Arthur GREYF, Irina BALAKO
  • Patent number: 10579755
    Abstract: A method for producing bone grafts using 3-D printing is employed using a 3-D image of a graft location to produce a 3-D model of the graft. This is printed using a 3-D printer and a printing medium that produces a porous, biocompatible, biodegradable material that is conducive to osteoinduction. For example, the printing medium may be PCL, PLLA, PGLA, or another approved biocompatible polymer. In addition such a method may be useful for cosmetic surgeries, reconstructive surgeries, and various techniques required by such procedures. Once the graft is placed, natural bone gradually replaces the graft.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: March 3, 2020
    Inventors: Arthur Greyf, Irina Balako
  • Publication number: 20190251217
    Abstract: A method for producing bone grafts using 3-D printing is employed using a 3-D image of a graft location to produce a 3-D model of the graft. This is printed using a 3-D printer and a printing medium that produces a porous, biocompatible, biodegradable material that is conducive to osteoinduction. For example, the printing medium may be PCL, PLLA, PGLA, or another approved biocompatible polymer. In addition such a method may be useful for cosmetic surgeries, reconstructive surgeries, and various techniques required by such procedures. Once the graft is placed, natural bone gradually replaces the graft.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Arthur GREYF, Irina BALAKO
  • Publication number: 20170024501
    Abstract: A method for producing bone grafts using 3-D printing is employed using a 3-D image of a graft location to produce a 3-D model of the graft. This is printed using a 3-D printer and a printing medium that produces a porous, biocompatible, biodegradable material that is conducive to osteoinduction. For example, the printing medium may be PCL, PLLA, PGLA, or another approved biocompatible polymer. In addition such a method may be useful for cosmetic surgeries, reconstructive surgeries, and various techniques required by such procedures. Once the graft is placed, natural bone gradually replaces the graft.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Arthur GREYF, Irina BALAKO