Patents by Inventor Irina Gitlin
Irina Gitlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9173817Abstract: Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).Type: GrantFiled: August 12, 2011Date of Patent: November 3, 2015Assignee: Arsenal Medical, Inc.Inventors: Upma Sharma, Irina Gitlin, Gregory T. Zugates, Adam Rago, Parisa Zamiri, Rany Busold, Toby Freyman, Robert J. Caulkins, Quynh P. Pham, Changcheng You, Jeffrey D. Carbeck
-
Publication number: 20150224235Abstract: Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).Type: ApplicationFiled: September 22, 2014Publication date: August 13, 2015Inventors: Upma Sharma, Irina Gitlin, Gregory T. Zugates, Adam Rago, Parisa Zamiri, Rany Busold, Toby Freyman, Robert J. Caulkins, Quynh P. Pham, Changchen You, Jeffrey D. Carbeck
-
Patent number: 8993831Abstract: Medical implants and methods useful in treating postpartum hemorrhage are disclosed. The implants, in some embodiments, comprise polyurethane foams having advantageous mechanical and other properties selected to promote hemostasis when brought in contact with an inner wall of a uterus. Methods of making and deploying such implants are also disclosed.Type: GrantFiled: June 28, 2012Date of Patent: March 31, 2015Assignee: Arsenal Medical, Inc.Inventors: Upma Sharma, Irina Gitlin, Parisa Zamiri, Toby Freyman, Rany Busold, Lee Core, Janet Chie Komatsu, Jennifer Mortensen
-
Patent number: 8986628Abstract: A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.Type: GrantFiled: November 16, 2012Date of Patent: March 24, 2015Assignees: President and Fellows of Harvard College, The Governing Council of the Univ. of TorontoInventors: Howard A. Stone, Shelley L. Anna, Nathalie Bontoux, Darren Roy Link, David A. Weitz, Irina Gitlin, Eugenia Kumacheva, Piotr Garstecki, Willow R. Diluzio, George M. Whitesides
-
Publication number: 20140037514Abstract: A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.Type: ApplicationFiled: November 16, 2012Publication date: February 6, 2014Applicants: Governing Council of the Univ. of Toronto, The MaRS Centre, President and Fellows of Harvard CollegeInventors: Howard A. Stone, Shelly L. Anna, Nathalie Bontoux, Darren Roy Link, David A. Weitz, Irina Gitlin, Eugenia Kumacheva, Piotr Garstecki, Willow R. DiLuzio, George M. Whitesides
-
Publication number: 20130110066Abstract: Medical implants and methods useful in treating postpartum hemorrhage are disclosed. The implants, in some embodiments, comprise polyurethane foams having advantageous mechanical and other properties selected to promote hemostasis when brought in contact with an inner wall of a uterus. Methods of making and deploying such implants are also disclosed.Type: ApplicationFiled: June 28, 2012Publication date: May 2, 2013Applicant: Arsenal MedicalInventors: Upma Sharma, Irina Gitlin, Parisa Zamiri, Toby Freyman, Rany Busold, Lee Core, Janet Chie Komatsu, Jennifer Mortensen
-
Patent number: 8337778Abstract: A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.Type: GrantFiled: March 17, 2010Date of Patent: December 25, 2012Assignees: President and Fellows of Harvard College, The Governing Council of the Univ. of TorontoInventors: Howard A. Stone, Shelley L. Anna, Nathalie Bontoux, Darren Roy Link, David A. Weitz, Irina Gitlin, Eugenia Kumacheva, Piotr Garstecki, Willow R. Diluzio, George M. Whitesides
-
Publication number: 20120107439Abstract: Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).Type: ApplicationFiled: August 12, 2011Publication date: May 3, 2012Applicant: Arsenal Medical, Inc.Inventors: Upma Sharma, Irina Gitlin, Gregory T. Zugates, Adam Rago, Parisa Zamiri, Rany Busold, Robert J. Caulkins, Toby Freyman, Quynh P. Pham, Changcheng You, Jeffrey D. Carbeck
-
Publication number: 20110202016Abstract: Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).Type: ApplicationFiled: August 24, 2010Publication date: August 18, 2011Applicant: Arsenal Medical, Inc.Inventors: Gregory Zugates, Upma Sharma, Irina Gitlin, Jeffrey D. Carbeck, Amar Kendale, Danny Concagh
-
Publication number: 20100172803Abstract: A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.Type: ApplicationFiled: March 17, 2010Publication date: July 8, 2010Applicants: President and Fellows of Harvard College, The Governing Council of the University of TorontoInventors: Howard A. Stone, Shelley L. Anna, Nathalie Bontoux, Darren R. Link, David A. Weitz, Irina Gitlin, Eugenia Kumacheva, Piotr Garstecki, Willow Diluzio, George M. Whitesides
-
Patent number: 7708949Abstract: A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.Type: GrantFiled: December 28, 2004Date of Patent: May 4, 2010Assignees: President and Fellows of Harvard College, Governing Council of the Univ. of TorontoInventors: Howard A. Stone, Shelley L. Anna, Nathalie Bontoux, Darren R. Link, David A. Weitz, Irina Gitlin, Eugenia Kumacheva, Piotr Garstecki, Willow Diluzio, George M. Whitesides
-
Publication number: 20090041824Abstract: A medical device and method for drug delivery employing a 3-dimensional pattern of a polymer support material (e.g., that is degradable after implant in a body), a drug associated with the polymer support material, and an adhesive that adheres the polymer support material and associated drug to body tissue. The adhesive may persist to maintain the device in a suitable position for a suitable time (e.g., until after the polymer support material begins to degrade to release the drug), and the drug may be arranged in discrete areas of the 3-dimensional pattern that are separated from each other. The pattern may be produced in whole or in part before deployment at a body site, or may be produced in whole or in part directly at a tissue surface.Type: ApplicationFiled: August 6, 2008Publication date: February 12, 2009Applicant: Arsenal Medical, Inc.Inventors: Greg Zugates, David M. Dewitt, Amar Kendale, Irina Gitlin, Jeffrey Carbeck
-
Publication number: 20080113421Abstract: The present invention generally relates to enzymes and other proteins resistant to denaturation, and techniques for making and using the same. In one aspect, lysine and/or other charged residues within an enzyme are reacted in some fashion, which can render the enzyme more resistant to denaturation. For example, the lysine residue may be neutralized by acetylating the residue, for instance, by exposure to acetic anhydride. In some aspects, the enzyme, after reaction, may be relatively resistant to degradation when placed in a harsh environment, for example, when exposed to sodium dodecyl sulfate at a concentration of at least about 2.5 mM in Tris-Gly buffer. The enzyme may still be susceptible to denaturation in some cases, but at a much slower rate (e.g., the denaturation time constant may be higher). Other aspects of the invention are directed to enzymes prepared in such fashion, methods of promoting or using such enzymes, kits involving such enzymes, and the like.Type: ApplicationFiled: December 11, 2006Publication date: May 15, 2008Applicant: President and Fellows of Harvard CollegeInventors: Bryan F. Shaw, Katherine L. Gudiksen, Irina Gitlin, Demetri T. Moustakas, George M. Whitesides
-
Publication number: 20070054119Abstract: The present invention generally relates to systems and methods of forming particles and, in certain aspects, to systems and methods of forming particles that are substantially monodisperse. Microfluidic systems and techniques for forming such particles are provided, for instance, particles may be formed using gellation, solidification, and/or chemical reactions such as cross-linking, polymerization, and/or interfacial polymerization reactions. In one aspect, the present invention is directed to a plurality of particles having an average dimension of less than about 500 micrometers and a distribution of dimensions such that no more than about 5% of the particles have a dimension greater than about 10% of the average dimension, which can be made via microfluidic systems. In one set of embodiments, at least some of the particles may comprise a metal, and in certain embodiments, at least some of the particles may comprise a magnetizable material.Type: ApplicationFiled: March 3, 2006Publication date: March 8, 2007Inventors: Piotr Garstecki, Douglas Weibel, Irina Gitlin, Shoji Takeuchi, Shengqing Xu, Zhihong Nie, Min Seo, Patrick Lewis, Eugenia Kumacheva, Howard Stone, George Whitesides
-
Publication number: 20050172476Abstract: A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.Type: ApplicationFiled: December 28, 2004Publication date: August 11, 2005Applicants: President and Fellows of Havard College, The Governing Council of the University of TorontoInventors: Howard Stone, Shelley Anna, Nathalie Bontoux, Darren Link, David Weitz, Irina Gitlin, Eugenia Kumacheva, Piotr Garstecki, Willow Diluzio, George Whitesides