Patents by Inventor Irina Pavlovna Spiry

Irina Pavlovna Spiry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10610826
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is disclosed, in which the gas stream is reacted with a lean aminosilicone solvent in an absorber, resulting in a rich aminosilicone solvent that is then treated in a desorber to release the CO2 and regenerate lean aminosilicone solvent in a desorption reaction. The regenerated solvent is directed into a steam-producing, indirect heat exchanger that is configured to supply steam to the desorber at a temperature high enough to augment the desorption reaction. Also, selected amounts of make-up water are added to the rich aminosilicone solvent at one or more process locations between the absorber and the desorber, to lower the viscosity of the solvent and to lower the temperature required for the desorption reaction.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 7, 2020
    Assignee: Baker Hughes, A GE Company, LLC
    Inventors: Surinder Prabhjot Singh, Dan Hancu, Benjamin Rue Wood, Wei Chen, Irina Pavlovna Spiry, Joseph Philip DiPietro
  • Patent number: 10465565
    Abstract: A CO2 energy storage system includes a storage tank that stores a CO2 slurry, including dry ice and liquid CO2, at CO2 triple point temperature and pressure conditions. The storage system also includes a first pump coupled in flow communication with the storage tank. The first pump is configured to receive the CO2 slurry from the storage tank and to increase a pressure of the CO2 slurry to a pressure above the CO2 triple point pressure. The energy storage system further includes a contactor coupled in flow communication with the first pump. The contactor is configured to receive the high pressure CO2 slurry from the pump and to receive a first flow of gaseous CO2 at a pressure above the CO2 triple point pressure. The gaseous CO2 is contacted and then condensed by the melting dry ice in the slurry to generate liquid CO2.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: November 5, 2019
    Assignee: General Electric Company
    Inventors: Irina Pavlovna Spiry, Albert Santo Stella, John Brian McDermott, Stephen Sanborn
  • Patent number: 10378763
    Abstract: A power generation system includes a power generation plant portion including a feedwater heating system configured to channel a feedwater stream and a carbon dioxide capture portion coupled in flow communication with the power generation plant portion. The carbon dioxide capture portion includes a solvent circuit configured to channel a solvent stream through at least a portion of the carbon dioxide capture portion. The carbon dioxide capture portion also includes a heat recovery system coupled in flow communication with the solvent circuit and the feedwater heating system. The heat recovery system is configured to transfer heat energy from the solvent stream to the feedwater stream and to channel the heated feedwater from the heat recovery system to the feedwater heating system.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: August 13, 2019
    Assignee: General Electric Company
    Inventors: Surinder Prabhjot Singh, Dan Hancu, Benjamin Rue Wood, Wei Chen, Dwayne David McDuffie, Mark David Kehmna, Irina Pavlovna Spiry
  • Patent number: 10213732
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: February 26, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, Surinder Prabhjot Singh, Robert James Perry, John Brian McDermott
  • Publication number: 20180156074
    Abstract: A CO2 energy storage system includes a storage tank that stores a CO2 slurry, including dry ice and liquid CO2, at CO2 triple point temperature and pressure conditions. The storage system also includes a first pump coupled in flow communication with the storage tank. The first pump is configured to receive the CO2 slurry from the storage tank and to increase a pressure of the CO2 slurry to a pressure above the CO2 triple point pressure. The energy storage system further includes a contactor coupled in flow communication with the first pump. The contactor is configured to receive the high pressure CO2 slurry from the pump and to receive a first flow of gaseous CO2 at a pressure above the CO2 triple point pressure.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 7, 2018
    Inventors: Irina Pavlovna Spiry, Albert Santo Stella, John Brian McDermott, Stephen Sanborn
  • Patent number: 9890183
    Abstract: The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80° C. to about 150° C. and a second condensation process at a temperature from about 5° C. to about 75° C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Irina Pavlovna Spiry, Robert James Perry, Benjamin Rue Wood, Surinder Prabhjot Singh, Rachel Lizabeth Farnum, Sarah Elizabeth Genovese
  • Publication number: 20180001259
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is disclosed, in which the gas stream is reacted with a lean aminosilicone solvent in an absorber, resulting in a rich aminosilicone solvent that is then treated in a desorber to release the CO2 and regenerate lean aminosilicone solvent in a desorption reaction. The regenerated solvent is directed into a steam-producing, indirect heat exchanger that is configured to supply steam to the desorber at a temperature high enough to augment the desorption reaction. Also, selected amounts of make-up water are added to the rich aminosilicone solvent at one or more process locations between the absorber and the desorber, to lower the viscosity of the solvent and to lower the temperature required for the desorption reaction.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Surinder Prabhjot Singh, Dan Hancu, Benjamin Rue Wood, Wei Chen, Irina Pavlovna Spiry, Joseph Philip DiPietro
  • Publication number: 20170341016
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Application
    Filed: August 14, 2017
    Publication date: November 30, 2017
    Inventors: Irina Pavlovna SPIRY, Benjamin Rue WOOD, Surinder Prabhjot SINGH, Robert James PERRY, John Brian MCDERMOTT
  • Patent number: 9764274
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: September 19, 2017
    Assignee: General Electric Company
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, Surinder Prabhjot Singh, Robert James Perry, John Brian McDermott
  • Publication number: 20170159932
    Abstract: A power generation system includes a power generation plant portion including a feedwater heating system configured to channel a feedwater stream and a carbon dioxide capture portion coupled in flow communication with the power generation plant portion. The carbon dioxide capture portion includes a solvent circuit configured to channel a solvent stream through at least a portion of the carbon dioxide capture portion. The carbon dioxide capture portion also includes a heat recovery system coupled in flow communication with the solvent circuit and the feedwater heating system. The heat recovery system is configured to transfer heat energy from the solvent stream to the feedwater stream and to channel the heated feedwater from the heat recovery system to the feedwater heating system.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 8, 2017
    Inventors: Surinder Prabhjot Singh, Dan Hancu, Benjamin Rue Wood, Wei Chen, Dwayne David McDuffie, Mark David Kehmna, Irina Pavlovna Spiry
  • Publication number: 20170158717
    Abstract: The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80° C. to about 150° C. and a second condensation process at a temperature from about 5° C. to about 75° C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.
    Type: Application
    Filed: December 8, 2015
    Publication date: June 8, 2017
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Irina Pavlovna SPIRY, Robert James PERRY, Benjamin Rue WOOD, Surinder Prabhjot SINGH, Rachel Lizabeth FARNUM, Sarah Elizabeth GENOVESE
  • Publication number: 20160175770
    Abstract: A method for separating carbon dioxide (CO2) from a fluid stream comprising CO2 and a liquid solvent is provided. The method includes receiving the fluid stream at a first flashing means to obtain a first CO2 stream and a first CO2 lean fluid stream enriched in the liquid solvent in comparison with the fluid stream. Further, the method also includes receiving the first CO2 lean fluid stream at a second flashing means to obtain a second CO2 stream and a second CO2 lean fluid stream that is enriched in the liquid solvent in comparison with the first CO2 lean fluid stream.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 23, 2016
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, John Brian McDermott, Surinder Prabhjot Singh, Sarah Elizabeth Genovese
  • Publication number: 20160166984
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, Surinder Prabhjot Singh, Robert James Perry, John Brian McDermott