Patents by Inventor Irina Wachter-Stehle

Irina Wachter-Stehle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10695131
    Abstract: The present invention relates to a medical imaging system (10) for planning an implantation of a cardiac implant (42), comprising: a receiving unit (12) for receiving a plurality of three-dimensional (3D) cardiac images (14, 14?) showing different conditions of a heart (32) during a cardiac cycle; a segmentation unit (22) for segmenting within the plurality of 3D cardiac images (14, 14?) a target implant region (38) and a locally adjacent region (40) that could interfere with the cardiac implant (42); a simulation unit (24) for simulating the implantation of the cardiac implant (42) within the target implant region (40) in at least two of the plurality of 3D cardiac images (14, 14?); a collision evaluation unit (26) for evaluating an overlap (46) of the simulated cardiac implant (42) with the segmented locally adjacent region (40) in at least two of the plurality of 3D cardiac images (14, 14?); and a feedback unit (28) for providing feedback information to a user concerning the evaluated overlap (46).
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: June 30, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Frank Michael Weber, Thomas Heiko Stehle, Irina Wachter-Stehle, Jochen Peters, Juergen Weese
  • Patent number: 10354389
    Abstract: A system and a method are provided for analyzing an image of an aortic valve structure to enable assessment of aortic valve calcifications. The system comprises an image interface for obtaining an image of an aortic valve structure, the aortic valve structure comprising aortic valve leaflets and an aortic bulbus. The system further comprises a segmentation subsystem for segmenting the aortic valve structure in the image to obtain a segmentation of the aortic valve structure. The system further comprises an identification subsystem for identifying a calcification on the aortic valve leaflets by analyzing the image of the aortic valve structure.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 16, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Juergen Weese, Alexandra Groth, Jochen Peters, Irina Wachter-Stehle, Sabine Mollus
  • Patent number: 10146403
    Abstract: System (100) for enabling an interactive inspection of a region of interest (122) in a medical image (102), the system comprising display means (160) for displaying user interface elements (310, 320, 330) of actions associated with the interactive inspection of the region of interest and a processor (180) for executing one of the actions when a user selects an associated one of the user interface elements, the system further comprising establishing means (120) for establishing the region of interest in the medical image, determining means (140) for determining an anatomical property (142) of the region of interest in dependence on an image property of the region of interest, and the display means (160) being arranged for (i), in dependence on the anatomical property, establishing a display configuration (162) of the user interface elements, and (ii) displaying the user interface elements in accordance with the display configuration.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: December 4, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Juergen Weese, Irina Wächter-Stehle, Axel Saalbach
  • Patent number: 10109072
    Abstract: An image processing apparatus and related method. The apparatus (PP) comprises an input port (IN), a classifier (CLS) and an output port (OUT). The input port is capable of receiving an image of an object acquired at a field of view (FoV) by an imager (USP). The image records a pose of the object corresponding to the imager's field of view (FoV). The classifier (CLA) is configured to use a geometric model of the object to determine, from a collection of pre-defined candidate poses, the pose of the object as recorded in the image. The output port (OUT) is configured to output pose parameters descriptive of the determined pose.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: October 23, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Heiko Stehle, Juergen Weese, Irina Wachter-Stehle
  • Publication number: 20180289424
    Abstract: The present invention relates to a medical imaging system (10) for planning an implantation of a cardiac implant (42), comprising: a receiving unit (12) for receiving a plurality of three-dimensional (3D) cardiac images (14, 14?) showing different conditions of a heart (32) during a cardiac cycle; a segmentation unit (22) for segmenting within the plurality of 3D cardiac images (14, 14?) a target implant region (38) and a locally adjacent region (40) that could interfere with the cardiac implant (42); a simulation unit (24) for simulating the implantation of the cardiac implant (42) within the target implant region (40) in at least two of the plurality of 3D cardiac images (14, 14?); a collision evaluation unit (26) for evaluating an overlap (46) of the simulated cardiac implant (42) with the segmented locally adjacent region (40) in at least two of the plurality of 3D cardiac images (14, 14?); and a feedback unit (28) for providing feedback information to a user concerning the evaluated overlap (46).
    Type: Application
    Filed: April 4, 2018
    Publication date: October 11, 2018
    Inventors: FRANK MICHAEL WEBER, THOMAS HEIKO STEHLE, IRINA WACHTER-STEHLE, JOCHEN PETERS, JUERGEN WEESE
  • Patent number: 10043270
    Abstract: An image processing apparatus (16) is disclosed for segmenting a region of interest (15) in a multi-dimensional image data of an object (12). The image processing apparatus comprises an interface for receiving an image data of the object including the region of interest to be segmented. A selection unit selects a deformable model 30 of an anatomical structure corresponding to the object in the image data. A processing unit segments the region of interest by adapting the deformable model on the basis of the image data (xt) and additional information of the object.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: August 7, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Irina Wächter-Stehle, Juergen Weese, Christian Buerger
  • Patent number: 9956046
    Abstract: The present invention relates to a medical imaging system (10) for planning an implantation of a cardiac implant (42), comprising: a receiving unit (12) for receiving a plurality of three-dimensional (3D) cardiac images (14, 14?) showing different conditions of a heart (32) during a cardiac cycle; a segmentation unit (22) for segmenting within the plurality of 3D cardiac images (14, 14?) a target implant region (38) and a locally adjacent region (40) that could interfere with the cardiac implant (42); a simulation unit (24) for simulating the implantation of the cardiac implant (42) within the target implant region (40) in at least two of the plurality of 3D cardiac images (14, 14?); a collision evaluation unit (26) for evaluating an overlap (46) of the simulated cardiac implant (42) with the segmented locally adjacent region (40) in at least two of the plurality of 3D cardiac images (14, 14?); and a feedback unit (28) for providing feedback information to a user concerning the evaluated overlap (46).
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: May 1, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Frank Michael Weber, Thomas Heiko Stehle, Irina Wachter-Stehle, Jochen Peters, Juergen Weese
  • Publication number: 20170301096
    Abstract: A system and a method are provided for analyzing an image of an aortic valve structure to enable assessment of aortic valve calcifications. The system comprises an image interface for obtaining an image of an aortic valve structure, the aortic valve structure comprising aortic valve leaflets and an aortic bulbus. The system further comprises a segmentation subsystem for segmenting the aortic valve structure in the image to obtain a segmentation of the aortic valve structure. The system further comprises an identification subsystem for identifying a calcification on the aortic valve leaflets by analyzing the image of the aortic valve structure.
    Type: Application
    Filed: September 11, 2015
    Publication date: October 19, 2017
    Inventors: JUERGEN WEESE, ALEXANDRA GROTH, JOCHEN PETERS, IRINA WACHTER-STEHLE, SABINE MOLLUS
  • Patent number: 9684972
    Abstract: An imaging apparatus for imaging an object includes a geometric relation determination unit configured to determine a geometric relation between first and second images of the object. A marker determination unit configured to determine corresponding marker locations in the first and second images and marker appearances based on the geometric relation such that the marker appearances of a first marker to be located at a first location in the first image and of a second marker to be located at a second corresponding location in the second image are indicative of the geometric relation. The images with the markers at the respective corresponding locations are shown on a display unit. Since the marker appearances are indicative of the geometric relation between the images, a comparative reviewing of the images can be facilitated, in particular, if they correspond to different viewing geometries.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 20, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Juergen Weese, Irina Wächter-Stehle, Thomas Heiko Stehle, Alex Saalbach, Sabine Mollus, Nicole Schadewaldt, Lyubomir Georgiev Zagorchev
  • Publication number: 20170084023
    Abstract: An image processing apparatus (16) is disclosed for segmenting a region of interest (15) in a multi-dimensional image data of an object (12). The image processing apparatus comprises an interface for receiving an image data of the object including the region of interest to be segmented. A selection unit selects a deformable model 30 of an anatomical structure corresponding to the object in the image data. A processing unit segments the region of interest by adapting the deformable model on the basis of the image data (xt) and additional information of the object.
    Type: Application
    Filed: February 27, 2015
    Publication date: March 23, 2017
    Inventors: Irina Wächter-Stehle, Juergen Weese, Christian Buerger
  • Publication number: 20160128786
    Abstract: The present invention relates to a medical imaging system (10) for planning an implantation of a cardiac implant (42), comprising: a receiving unit (12) for receiving a plurality of three-dimensional (3D) cardiac images (14, 14?) showing different conditions of a heart (32) during a cardiac cycle; a segmentation unit (22) for segmenting within the plurality of 3D cardiac images (14, 14?) a target implant region (38) and a locally adjacent region (40) that could interfere with the cardiac implant (42); a simulation unit (24) for simulating the implantation of the cardiac implant (42) within the target implant region (40) in at least two of the plurality of 3D cardiac images (14, 14?); a collision evaluation unit (26) for evaluating an overlap (46) of the simulated cardiac implant (42) with the segmented locally adjacent region (40) in at least two of the plurality of 3D cardiac images (14, 14?); and a feedback unit (28) for providing feedback information to a user concerning the evaluated overlap (46).
    Type: Application
    Filed: May 30, 2014
    Publication date: May 12, 2016
    Inventors: FRANK MICHAEL WEBER, THOMAS HEIKO STEHLE, IRINA WACHTER-STEHLE, JOCHEN PETERS, JUERGEN WEESE
  • Publication number: 20160012596
    Abstract: An image processing apparatus and related method. The apparatus (PP) comprises an input port (IN), a classifier (CLS) and an output port (OUT). The input port is capable of receiving an image of an object acquired at a field of view (FoV) by an imager (USP). The image records a pose of the object corresponding to the imager's field of view (FoV). The classifier (CLA) is configured to use a geometric model of the object to determine, from a collection of pre-defined candidate poses, the pose of the object as recorded in the image. The output port (OUT) is configured to output pose parameters descriptive of the determined pose.
    Type: Application
    Filed: March 17, 2014
    Publication date: January 14, 2016
    Inventors: Thomas Heiko Stehle, Juergen Weese, Irina Wachter-Stehle
  • Publication number: 20150026643
    Abstract: System (100) for enabling an interactive inspection of a region of interest (122) in a medical image (102), the system comprising display means (160) for displaying user interface elements (310, 320, 330) of actions associated with the interactive inspection of the region of interest and a processor (180) for executing one of the actions when a user selects an associated one of the user interface elements, the system further comprising establishing means (120) for establishing the region of interest in the medical image, determining means (140) for determining an anatomical property (142) of the region of interest in dependence on an image property of the region of interest, and the display means (160) being arranged for (i), in dependence on the anatomical property, establishing a display configuration (162) of the user interface elements, and (ii) displaying the user interface elements in accordance with the display configuration.
    Type: Application
    Filed: September 17, 2012
    Publication date: January 22, 2015
    Inventors: Juergen Weese, Irina Wächter-Stehle, Axel Saalbach
  • Publication number: 20150016704
    Abstract: The invention relates to an imaging apparatus for imaging an object. A geometric relation determination unit (10) determines a geometric relation between first and second images of the object, wherein a marker determination unit (14) determines corresponding marker locations in the first and second images and marker appearances based on the geometric relation such that the marker appearances of a first marker to be located at a first location in the first image and of a second marker to be located at a second corresponding location in the second image are indicative of the geometric relation. The images with the markers at the respective corresponding locations are shown on a display unit (16). Since the marker appearances are indicative of the geometric relation between the images, a comparative reviewing of the images can be facilitated, in particular, if they correspond to different viewing geometries.
    Type: Application
    Filed: January 25, 2013
    Publication date: January 15, 2015
    Inventors: Juergen Weese, Irina Wächter-Stehle, Thomas Heiko Stehle, Alex Saalbach, Sabine Mollus, Nicole Schadewaldt, Lyubomir Georgiev Zagorchev