Patents by Inventor Irving L. Weissman

Irving L. Weissman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942185
    Abstract: Therapeutic and diagnostic methods are provided, which methods relate to the expression of calreticulin on cancer cells and hematopoietic cells.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 9, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark P. Chao, Rachel Weissman-Tsukamoto, Siddhartha Jaiswal, Ravindra Majeti, Irving L. Weissman
  • Patent number: 10934331
    Abstract: Cell loss by apoptosis is a common feature in certain conditions, including cancer. Dying tumor cells induce immune tolerance within the tumor microenvironment largely through highly conserved homeostatic clearance programs that are designed to restore tissue homeostasis and contribute to the formation of an immunosuppressive niche. The translocation of phosphatidylserine (PS) on cellular membranes, during the initial phases of apoptosis, functions as a recognition and removal signal that limits the immunogenicity of cell death. To remove inhibitory signals in the homeostatic clearance pathway a fusion protein comprising a phosphatidylserine binding domain and an immunostimulatory domain can restore immune responses to dead tumor cells in antigen cross presentation assays and promotes recruitment and retention of tumor antigen specific immune effector cells into tumors.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: March 2, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Daniel Mark Corey, Aaron Michael Ring, Melissa N. McCracken, Irving L. Weissman
  • Patent number: 10934355
    Abstract: Aspects of the present disclosure include methods of treating a subject to reduce adhesion formation, the method comprising administering to a subject in need of thereof an agent that that targets adhesion-formation by injured mesothelial cells. The agent can act at a variety of checkpoints in the development of adhesions by injured mesothelial cells, including: targeting the injured mesothelial cells for destruction, recruiting inflammatory macrophages to the site of adhesion, preventing neutrophil recruitment to the site of adhesion, and/or inhibiting the expression or activity of a gene product whose expression is induced in the injured mesothelial cells. Compositions and kits for performing the methods are also provided.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: March 2, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jonathan Tsai, Nathaniel Fernhoff, Rahul Sinha, Yuval Rinkevich, Irving L. Weissman
  • Publication number: 20210040176
    Abstract: High affinity PD-1 mimic polypeptides are provided, which (i) comprise at least one amino acid change relative to a wild-type PD-1 protein; and (ii) have an increased affinity for PD-L1 relative to the wild-type protein. Compositions and methods are provided for modulating the activity of immune cells in a mammal by administering a therapeutic dose of a pharmaceutical composition comprising a high affinity PD-1 mimic polypeptide, which blocks the physiological binding interaction between PD-1 and its ligand PD-L1 and/or PD-L2.
    Type: Application
    Filed: May 26, 2020
    Publication date: February 11, 2021
    Inventors: Aaron Michael Ring, Andrew Kruse, Aashish Manglik, Irving L. Weissman, Roy Louis Maute, Melissa N. McCracken, Sydney Gordon
  • Publication number: 20210040207
    Abstract: Markers of acute myeloid leukemia stem cells (AMLSC) are identified. The markers are differentially expressed in comparison with normal counterpart cells, and are useful as diagnostic and therapeutic targets.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 11, 2021
    Inventors: Ravindra Majeti, Irving L. Weissman
  • Publication number: 20210038643
    Abstract: Therapeutic and diagnostic methods are provided, which methods relate to the induction of expression of calreticulin on phagocytic cells. Specifically, the methods relate to macrophage-mediated programmed cell removal (PrCR), the methods comprising increasing PrCR by contacting a phagocytic cell with a toll-like receptor (TLR) agonist; or down-regulating PrCR by contacting a phagocytic cell with an inhibitor of Bruton's tyrosine kinase (BTK). In some embodiments, an activator of TLR signaling or a BTK agonist is provided in combination with CD4 7 blockade.
    Type: Application
    Filed: August 19, 2020
    Publication date: February 11, 2021
    Inventors: Irving L. Weissman, Mingye Feng, Jens-Peter Volkmer
  • Patent number: 10894831
    Abstract: Methods are provided for targeting cells for depletion, including without limitation tumor cells, in a regimen comprising contacting the targeted cells with a combination of agents that modulate immunoregulatory signaling. Immunoregulatory modulating agents include (i) an agent that blockades CD47 activity; and (ii) an agent that agonizes an immune costimulatory molecule, e.g. CD137. The regimen may further comprise an agent that specifically binds to the target cell, e.g. an antibody or biologically active fragment or derivative thereof. The level of depletion of the targeted cell is enhanced relative to a regimen in which a single immunoregulatory modulating agent is used; and the effect may be synergistic relative to a regimen in which a single immunoregulatory modulating agent is used.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 19, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Peter Schnorr, Akanksha Chhabra, Judith A. Shizuru, Irving L. Weissman, Kipp Andrew Weiskopf
  • Patent number: 10889649
    Abstract: Methods and compositions are provided for inducing phagocytosis of a target cell, treating an individual having cancer, treating an individual having an intracellular pathogen infection (e.g., a chronic infection), and/or reducing the number of inflicted cells (e.g., cancer cells, cells infected with an intracellular pathogen, etc.) in an individual. Methods and compositions are also provided for predicting whether an individual is resistant (or susceptible) to treatment with an anti-CD47/SIRPA agent. In some cases, the subject methods and compositions include an anti-MHC Class I/LILRB1 agent. In some cases, the subject methods and compositions include an anti-MHC Class I/LILRB1 agent and an anti-CD47/SIRPA agent (e.g., co-administration of an anti-MHC Class I/LILRB1 agent and an anti-CD47/SIRPA agent). Kits are also provided for practicing the methods of the disclosure.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: January 12, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Roy Louis Maute, Kipp Andrew Weiskopf, Aaron Michael Ring, Irving L. Weissman
  • Publication number: 20200377591
    Abstract: Markers of acute myeloid leukemia stem cells (AMLSC) are identified. The markers are differentially expressed in comparison with normal counterpart cells, and are useful as diagnostic and therapeutic targets.
    Type: Application
    Filed: April 20, 2020
    Publication date: December 3, 2020
    Inventors: Ravindra Majeti, Irving L. Weissman
  • Publication number: 20200369767
    Abstract: The invention provides co-administration regimes of immunotherapeutic agents specifically binding to c-kit or inhibiting CD47-SIRP? for ablation of endogenous HSPCs. Relatively low levels of anti-c-kit result in saturation of binding to c-kit on HSPCs without significant reduction of the levels HSPCs. Significant reduction of the level of HSPCs can be obtained when the action of anti-c-kit is promoted by an immunotherapeutic agent inhibiting CD47-SIRP?. HSPCs expressing c-kit can thus be reduced to an acceptable level an acceptable level to permit introduction of replacement HSPCs without detrimental delay during which a subject has inadequate HSPCs.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Inventors: Craig Gibbs, Jens-Peter Volkmer, Irving L. Weissman, Kristopher Marjon
  • Publication number: 20200354469
    Abstract: Methods are provided for treating a subject with for an intracellular pathogen infection, by administering an agent that reduces the binding of CD47 on a infected cell to SIRP? on a host phagocytic cell, in an effective dose for increasing the phagocytosis of infected cells.
    Type: Application
    Filed: June 15, 2020
    Publication date: November 12, 2020
    Inventors: Kipp Andrew Weiskopf, Kim J. Hasenkrug, Cheryl A. Stoddart, Joseph McCrary McCune, Irving L. Weissman
  • Patent number: 10822411
    Abstract: In the methods of the invention, an agent that increases phagocytosis and/or efferocytosis of cellular components of coronary plaque is administered to the subject in a dose and for a period of time effective to stabilize, prevent or reduce aneurysm disease in the individual.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: November 3, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nicholas J. Leeper, Irving L. Weissman
  • Patent number: 10800830
    Abstract: High affinity PD-1 mimic polypeptides are provided, which (i) comprise at least one amino acid change relative to a wild-type PD-1 protein; and (ii) have an increased affinity for PD-L1 relative to the wild-type protein. Compositions and methods are provided for modulating the activity of immune cells in a mammal by administering a therapeutic dose of a pharmaceutical composition comprising a high affinity PD-1 mimic polypeptide, which blocks the physiological binding interaction between PD-1 and its ligand PD-L1 and/or PD-L2.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: October 13, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aaron Michael Ring, Andrew Kruse, Aashish Manglik, Irving L. Weissman, Roy Louis Maute, Melissa N. McCracken, Sydney Gordon
  • Patent number: 10787640
    Abstract: Methods are provided for the generation of mesodermal cell types and derivatives thereof. Also provided are methods for generating purified populations of mesodermal cell types and derivatives thereof. The instant disclosure also provides methods of screening for cellular responses of the generated mesodermal cell types and derivatives thereof. Also provide are methods for screening for organismal phenotypes induced by introduction of the generated mesodermal cell types and derivatives thereof. Treatment methods making use of the generated mesodermal cell types and derivatives thereof are also provided. The instant disclosure also provides systems, compositions, and kits for practicing the methods of the disclosure.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: September 29, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kyle Ming Loh, Irving L. Weissman, Lay Teng Ang, Angela Chen
  • Patent number: 10781256
    Abstract: Anti-SIRP? antibodies, including multi-specific anti-SIRP? antibodies, are provided, as are related compositions and methods. The antibodies of the disclosure bind to SIRP? and can block the interaction of CD47 on one cell with SIRP? on a phagocytic cell. Antibodies that are bispecific for SIRP? and a second antigen are termed Bi-specific Macrophage Enhancing (BiME) antibodies and have emergent properties. The subject anti-SIRP? antibodies find use in various therapeutic methods. Embodiments of the disclosure include isolated antibodies and derivatives and fragments thereof, pharmaceutical formulations comprising one or more of the anti-SIRP? antibodies; and cell lines that produce the antibodies. Also provided are amino acid sequences of exemplary anti-SIRP? antibodies.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 22, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kipp Andrew Weiskopf, Aaron Michael Ring, Jens-Peter Volkmer, Irving L. Weissman, Nan Guo Ring
  • Patent number: 10780117
    Abstract: Therapeutic and diagnostic methods are provided, which methods relate to the induction of expression of calreticulin on phagocytic cells. Specifically, the methods relate to macrophage-mediated programmed cell removal (PrCR), the methods comprising increasing PrCR by contacting a phagocytic cell with a toll-like receptor (TLR) agonist; or down-regulating PrCR by contacting a phagocytic cell with an inhibitor of Bruton's tyrosine kinase (BTK). In some embodiments, an activator of TLR signaling or a BTK agonist is provided in combination with CD47 blockade.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: September 22, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Irving L. Weissman, Mingye Feng, Jens-Peter Volkmer
  • Publication number: 20200262918
    Abstract: Anti-SIRP? antibodies, including multi-specific anti-SIRP? antibodies, are provided, as are related compositions and methods. The antibodies of the disclosure bind to SIRP? and can block the interaction of CD47 on one cell with SIRP? on a phagocytic cell. The subject anti-SIRP? antibodies find use in various therapeutic methods. Embodiments of the disclosure include isolated antibodies and derivatives and fragments thereof, pharmaceutical formulations comprising one or more of the anti-SIRP? antibodies; and cell lines that produce the antibodies. Also provided are amino acid sequences of exemplary anti-SIRP? antibodies.
    Type: Application
    Filed: February 27, 2020
    Publication date: August 20, 2020
    Inventors: Jie Liu, Aaron Michael Ring, Jens-Peter Volkmer, Irving L. Weissman
  • Patent number: 10723803
    Abstract: Methods are provided for treating a subject with for an intracellular pathogen infection, by administering an agent that reduces the binding of CD47 on a infected cell to SIRP? on a host phagocytic cell, in an effective dose for increasing the phagocytosis of infected cells.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: July 28, 2020
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The United States of America, as represented by the Secretary, Department of Health and Human Services, The Regents of the University of California
    Inventors: Kipp Andrew Weiskopf, Kim J. Hasenkrug, Cheryl A. Stoddart, Joseph McCrary McCune, Irving L. Weissman
  • Publication number: 20200223922
    Abstract: Markers of acute myeloid leukemia stem cells (AMLSC) are identified. The markers are differentially expressed in comparison with normal counterpart cells, and are useful as diagnostic and therapeutic targets.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 16, 2020
    Inventors: Ravindra Majeti, Irving L. Weissman
  • Publication number: 20200223923
    Abstract: Methods are provided for targeting cells for depletion, including without limitation tumor cells, in a regimen comprising contacting the targeted cells with a combination of agents that modulate immunoregulatory signaling. Immunoregulatory modulating agents include (i) an agent that blockades CD47 activity; and (ii) an agent that agonizes an immune costimulatory molecule, e.g. CD137. The regimen may further comprise an agent that specifically binds to the target cell, e.g. an antibody or biologically active fragment or derivative thereof. The level of depletion of the targeted cell is enhanced relative to a regimen in which a single immunoregulatory modulating agent is used; and the effect may be synergistic relative to a regimen in which a single immunoregulatory modulating agent is used.
    Type: Application
    Filed: August 26, 2016
    Publication date: July 16, 2020
    Inventors: Peter Schnorr, Akanksha Chhabra, Judith A. Shizuru, Irving L. Weissman, Kipp Andrew Weiskopf