Patents by Inventor Isaac HENRY

Isaac HENRY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230284911
    Abstract: The invention provides methods and systems for continuous noninvasive measurement of vital signs such as blood pressure (cNIBP) based on pulse arrival time (PAT). The invention uses a body-worn monitor that recursively determines an estimated PEP for use in correcting PAT measurements by detecting low frequency vibrations created during a cardiac cycle, and a state estimator algorithm to identify signals indicative of aortic valve opening in those measured vibrations.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 14, 2023
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Devin McCOMBIE, Guanqun ZHANG, Isaac HENRY
  • Patent number: 11647910
    Abstract: The invention provides methods and systems for continuous noninvasive measurement of vital signs such as blood pressure (cNIBP) based on pulse arrival time (PAT). The invention uses a body-worn monitor that recursively determines an estimated PEP for use in correcting PAT measurements by detecting low frequency vibrations created during a cardiac cycle, and a state estimator algorithm to identify signals indicative of aortic valve opening in those measured vibrations.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 16, 2023
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Guanqun Zhang, Isaac Henry
  • Publication number: 20220378356
    Abstract: Methods and systems methods for continuously monitoring a patient for cardiac electrical abnormalities including atrial fibrillation, asystole, ventricular fibrillation and tachycardia.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Isaac HENRY, Devin McCOMBIE, Nicholas ELMSCHIG
  • Patent number: 11406314
    Abstract: Methods and systems methods for continuously monitoring a patient for cardiac electrical abnormalities including atrial fibrillation, asystole, ventricular fibrillation and tachycardia.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 9, 2022
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Isaac Henry, Devin McCombie, Nicholas Elmschig
  • Publication number: 20210177281
    Abstract: The invention provides methods and systems for continuous noninvasive measurement of vital signs such as blood pressure (cNIBP) based on pulse arrival time (PAT). The invention uses a body-worn monitor that recursively determines an estimated PEP for use in correcting PAT measurements by detecting low frequency vibrations created during a cardiac cycle, and a state estimator algorithm to identify signals indicative of aortic valve opening in those measured vibrations.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 17, 2021
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Devin McCOMBIE, Guanqun ZHANG, Isaac HENRY
  • Patent number: 10856752
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 8, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Patent number: 10856742
    Abstract: The invention provides methods and systems for continuous noninvasive measurement of vital signs such as blood pressure (cNIBP) based on pulse arrival time (PAT). The invention uses a body-worn monitor that recursively determines an estimated PEP for use in correcting PAT measurements by detecting low frequency vibrations created during a cardiac cycle, and a state estimator algorithm to identify signals indicative of aortic valve opening in those measured vibrations.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: December 8, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Guanqun Zhang, Isaac Henry
  • Patent number: 10722130
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 28, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Patent number: 10722132
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 28, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Patent number: 10722131
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 28, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Publication number: 20200093389
    Abstract: Methods and systems methods for continuously monitoring a patient for cardiac electrical abnormalities including atrial fibrillation, asystole, ventricular fibrillation and tachycardia.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Isaac HENRY, Devin McCOMBIE, Nicholas ELMSCHIG
  • Publication number: 20190254540
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Matthew BANET, Isaac HENRY, Donald BERNSTEIN
  • Patent number: 10278599
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: May 7, 2019
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matthew Banet, Isaac Henry, Donald Bernstein
  • Publication number: 20180344177
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 6, 2018
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Matthew BANET, Isaac HENRY, Donald BERNSTEIN
  • Patent number: 10052041
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: August 21, 2018
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matthew Banet, Isaac Henry, Donald Bernstein
  • Patent number: 9585577
    Abstract: The invention provides methods for measuring stroke volume from a patient using a transbrachial electro-velocimetry waveform measured using an impedance sensor together with a motion waveform measured using a motion sensor.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: March 7, 2017
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Publication number: 20160345844
    Abstract: The invention provides methods and systems for continuous noninvasive measurement of vital signs such as blood pressure (cNIBP) based on pulse arrival time (PAT). The invention uses a body-worn monitor that recursively determines an estimated PEP for use in correcting PAT measurements by detecting low frequency vibrations created during a cardiac cycle, and a state estimator algorithm to identify signals indicative of aortic valve opening in those measured vibrations.
    Type: Application
    Filed: February 6, 2015
    Publication date: December 1, 2016
    Inventors: Devin McCOMBIE, Guanqun ZHANG, Isaac HENRY
  • Publication number: 20160310017
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Application
    Filed: July 4, 2016
    Publication date: October 27, 2016
    Inventors: Matthew BANET, Isaac HENRY, Donald BERNSTEIN
  • Patent number: 9380952
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: July 5, 2016
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Patent number: 9364158
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: June 14, 2016
    Assignee: SOTERA WIRLESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein